A database for publications published by researchers and students at SimulaMet.
Status
Research area
Journal articles
Live Streaming Technology and Online Child Sexual Exploitation and Abuse - A Scoping Review
Trauma, Violence, & Abuse (2023).Status: Accepted
Live Streaming Technology and Online Child Sexual Exploitation and Abuse - A Scoping Review
Livestreaming of child sexual abuse is an established form of online child sexual exploitation
and abuse. However, only a limited body of research has examined this issue. The Covid-19
pandemic has accelerated internet use and user knowledge of livestreaming services
emphasising the importance of understanding this crime. In this scoping review, existing
literature was brought together through an iterative search of eight databases containing peer-
reviewed journal articles, as well as grey literature. Records were eligible for inclusion if the
primary focus was on livestream technology and online child sexual exploitation and abuse,
the child being defined as eighteen years or younger. Fourteen of the 2,218 records were
selected. The data were charted and divided into four categories: victims, offenders,
legislation, and technology. Limited research, differences in terminology, study design, and
population inclusion criteria present a challenge to drawing general conclusions on the
current state of livestreaming of child sexual abuse. The records show that victims are
predominantly female. The average livestream offender was found to be older than the
average online child sexual abuse offender. Therefore, it is unclear whether the findings are
representative of the global population of livestream offenders. Furthermore, there appears to
be a gap in what the records show on platforms and payment services used and current digital
trends. The lack of a legal definition and privacy considerations pose a challenge to
investigation, detection, and prosecution. The available data allow some insights into a
potentially much larger issue.
Afilliation | Communication Systems, Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Trauma, Violence, & Abuse |
Publisher | SAGE Publications |
Online Joint Topology Identification and Signal Estimation from Streams with Missing Data
IEEE Transactions on Signal and Information Processing over Networks (2023).Status: Accepted
Online Joint Topology Identification and Signal Estimation from Streams with Missing Data
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | IEEE Transactions on Signal and Information Processing over Networks |
Publisher | IEEE Transactions on Signal and Information Processing over Networks |
Notes | This work is a joint collaboration between SimulaMet and University of Agder. This work was supported by the SFI Offshore Mechatronics grant 237896/O30 from the Research Council of Norway. |
Posters
Concept Explanations for Deep Learning-Based Diabetic Retinopathy Diagnosis
Nordic AI Meet 2023, 2023.Status: Accepted
Concept Explanations for Deep Learning-Based Diabetic Retinopathy Diagnosis
Diabetic retinopathy (DR) is a common complication of diabetes that damages the eye and potentially leads to blindness. The severity and treatment choice of DR depends on the presence of medical findings in fundus images. Much work has been done in developing complex machine learning (ML) models to automatically diagnose DR from fundus images. However, their high level of complexity increases the demand for techniques improving human understanding of the ML models. Explainable artificial intelligence (XAI) methods can detect weaknesses in ML models and increase trust among end users. In the medical field, it is crucial to explain ML models in order to apply them in the clinic. While a plethora of XAI methods exists, heatmaps are typically applied for explaining ML models for DR diagnosis. Heatmaps highlight image areas that are regarded as important for the model when making a prediction. Even though heatmaps are popular, they can be less appropriate in the medical field. Testing with Concept Activation Vectors (TCAV), providing explanations based on human-friendly concepts, can be a more suitable alternative for explaining models for DR diagnosis, but it has not been thoroughly investigated for DR models. We develop a deep neural network for diagnosing DR from fundus images and apply TCAV for explaining the resulting model. Concept generation with and without masking is compared. Based on diagnostic criteria for DR, we evaluate the model’s concept ranking for different severity levels of DR. TCAV can explain individual images to gain insight into a specific case, or an entire class to evaluate overall consistency with diagnostic standards. The most important concepts for the DR model agree with diagnostic criteria for DR. No large differences are detected between the two concept generation approaches. TCAV is a flexible explanation method where human-friendly concepts provide insights and trust in ML models for medical image analyses, and it shows promising results for DR grading.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Poster |
Year of Publication | 2023 |
Place Published | Nordic AI Meet 2023 |
Keywords | concept-based explanations, diabetic retinopathy, Explainable artificial intelligence |
Proceedings, refereed
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
In IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023), 2023.Status: Accepted
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
Meibomian gland dysfunction is the most common cause of dry eye disease, which is a prevalent condition that can damage the ocular surface and cause reduced vision and substantial pain. Meibum secreted from the meibomian glands makes up the majority of the outer, protective lipid layer of the tear film. Changes in the secreted meibum and markers of glandular damage can be detected through tear sampling.
Several studies have investigated the tear film protein expression in meibomian gland dysfunction, but less work apply machine learning to analyze the protein patterns. We use machine learning and methods from explainable artificial intelligence to detect potential clinically relevant proteins in meibomian gland dysfunction. Two different explainable artificial intelligence methods are compared. Several of the proteins found important in the models have been linked to dry eye disease in the past, while some are novel. Consequently, explainable artificial intelligence methods serve as a promising tool for screening for proteins that are relevant for meibomian gland dysfunction. By doing so, one may be able to discover new biomarkers and treatments, and gain a better understanding of how diseases develop.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023) |
Keywords | Dry eye disease, Explainable artificial intelligence, Machine learning, meibomian gland dysfunction, proteomics |
Predicting Meibomian Gland Dropout and Feature Importance Analysis with Explainable Artificial Intelligence
In IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023), 2023.Status: Accepted
Predicting Meibomian Gland Dropout and Feature Importance Analysis with Explainable Artificial Intelligence
Dry eye disease is a common and potentially debilitating medical condition. Meibum secreted from the meibomian glands is the largest contributor to the outermost, protective lipid layer of the tear film. Dysfunction of the meibomian glands is the most common cause of dry eye disease. As meibomian gland dysfunction progresses, gradual atrophy of the glands is observed. The meibomian glands are commonly visualized through meibography, a technique requiring specialist equipment and knowledge that might not be available to the physician. In the present project we use machine learning on clinical tabular data to predict the degree of meibomian gland dropout. Moreover, we employ explainable artificial intelligence on the best performing algorithms for feature importance evaluation. The best performing algorithms were AdaBoost, multilayer perceptron and LightGBM which outperformed the majority vote baseline classifier in every included evaluation metric for both multioutput and binary classification. Through explainable artificial intelligence known associations are validated and novel connections identified and discussed.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023) |
Keywords | Dry eye disease, Explainable artificial intelligence, Machine learning, meibography, meibomian gland dysfunction |
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
In MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing. IEEE, 2023.Status: Accepted
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
Afilliation | Machine Learning |
Project(s) | Department of Data Science and Knowledge Discovery , TrACEr: Time-Aware ConstrainEd Multimodal Data Fusion |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing |
Publisher | IEEE |
Looking into Concept Explanation Methods for Diabetic Retinopathy Classification
In Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2023, 2023.Status: Accepted
Looking into Concept Explanation Methods for Diabetic Retinopathy Classification
Diabetic retinopathy is a common complication of diabetes, and monitoring the progression of retinal abnormalities using fundus imaging is crucial. Because the images must be interpreted by a medical expert, it is infeasible to screen all individuals with diabetes for diabetic retinopathy. Deep learning has shown impressive results for automatic analysis and grading of fundus images. One drawback is, however, the lack of interpretability, which hampers the implementation of such systems in the clinic. Explainable artificial intelligence methods can be applied to explain the deep neural networks. Explanations based on concepts have shown to be intuitive for humans to understand, but have not yet been explored in detail for diabetic retinopathy grading. This work investigates and compares two concept-based explanation techniques for explaining deep neural networks developed for automatic diagnosis of diabetic retinopathy: Quantitative Testing with Concept Activation Vectors and Concept Bottleneck Models. We found that both methods have strengths and weaknesses, and choice of method should take the available data and the end user’s preferences into account.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2023 |
Keywords | concept-based explanations, diabetic retinopathy, Explainable artificial intelligence |
Neighborhood Graph Filters based Graph Convolutional Neural Networks for Multi-Agent Deep Reinforcement Learning
In IEEE Conference of Industrial Electronics Society (IECON), 2023.Status: Accepted
Neighborhood Graph Filters based Graph Convolutional Neural Networks for Multi-Agent Deep Reinforcement Learning
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE Conference of Industrial Electronics Society (IECON) |
Journal articles
Cell exclusion during human embryo development result in altered morphokinetic patterns up to morula formation
Human Reproduction (2022).Status: Accepted
Cell exclusion during human embryo development result in altered morphokinetic patterns up to morula formation
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | Human Reproduction |
Publisher | Human Reproduction |
Posters
Automatic Thumbnail Selection for Soccer using Machine Learning
NORA Annual Conference, Stavanger, Norway, 2022.Status: Accepted
Automatic Thumbnail Selection for Soccer using Machine Learning
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Poster |
Year of Publication | 2022 |
Place Published | NORA Annual Conference, Stavanger, Norway |