A database for publications published by researchers and students at SimulaMet.
Status
Research area
Proceedings, refereed
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
In IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023), 2023.Status: Accepted
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
Meibomian gland dysfunction is the most common cause of dry eye disease, which is a prevalent condition that can damage the ocular surface and cause reduced vision and substantial pain. Meibum secreted from the meibomian glands makes up the majority of the outer, protective lipid layer of the tear film. Changes in the secreted meibum and markers of glandular damage can be detected through tear sampling.
Several studies have investigated the tear film protein expression in meibomian gland dysfunction, but less work apply machine learning to analyze the protein patterns. We use machine learning and methods from explainable artificial intelligence to detect potential clinically relevant proteins in meibomian gland dysfunction. Two different explainable artificial intelligence methods are compared. Several of the proteins found important in the models have been linked to dry eye disease in the past, while some are novel. Consequently, explainable artificial intelligence methods serve as a promising tool for screening for proteins that are relevant for meibomian gland dysfunction. By doing so, one may be able to discover new biomarkers and treatments, and gain a better understanding of how diseases develop.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023) |
Keywords | Dry eye disease, Explainable artificial intelligence, Machine learning, meibomian gland dysfunction, proteomics |
Predicting Meibomian Gland Dropout and Feature Importance Analysis with Explainable Artificial Intelligence
In IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023), 2023.Status: Accepted
Predicting Meibomian Gland Dropout and Feature Importance Analysis with Explainable Artificial Intelligence
Dry eye disease is a common and potentially debilitating medical condition. Meibum secreted from the meibomian glands is the largest contributor to the outermost, protective lipid layer of the tear film. Dysfunction of the meibomian glands is the most common cause of dry eye disease. As meibomian gland dysfunction progresses, gradual atrophy of the glands is observed. The meibomian glands are commonly visualized through meibography, a technique requiring specialist equipment and knowledge that might not be available to the physician. In the present project we use machine learning on clinical tabular data to predict the degree of meibomian gland dropout. Moreover, we employ explainable artificial intelligence on the best performing algorithms for feature importance evaluation. The best performing algorithms were AdaBoost, multilayer perceptron and LightGBM which outperformed the majority vote baseline classifier in every included evaluation metric for both multioutput and binary classification. Through explainable artificial intelligence known associations are validated and novel connections identified and discussed.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023) |
Keywords | Dry eye disease, Explainable artificial intelligence, Machine learning, meibography, meibomian gland dysfunction |
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
In MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing. IEEE, 2023.Status: Accepted
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
Afilliation | Machine Learning |
Project(s) | Department of Data Science and Knowledge Discovery , TrACEr: Time-Aware ConstrainEd Multimodal Data Fusion |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing |
Publisher | IEEE |
Looking into Concept Explanation Methods for Diabetic Retinopathy Classification
In Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2023, 2023.Status: Accepted
Looking into Concept Explanation Methods for Diabetic Retinopathy Classification
Diabetic retinopathy is a common complication of diabetes, and monitoring the progression of retinal abnormalities using fundus imaging is crucial. Because the images must be interpreted by a medical expert, it is infeasible to screen all individuals with diabetes for diabetic retinopathy. Deep learning has shown impressive results for automatic analysis and grading of fundus images. One drawback is, however, the lack of interpretability, which hampers the implementation of such systems in the clinic. Explainable artificial intelligence methods can be applied to explain the deep neural networks. Explanations based on concepts have shown to be intuitive for humans to understand, but have not yet been explored in detail for diabetic retinopathy grading. This work investigates and compares two concept-based explanation techniques for explaining deep neural networks developed for automatic diagnosis of diabetic retinopathy: Quantitative Testing with Concept Activation Vectors and Concept Bottleneck Models. We found that both methods have strengths and weaknesses, and choice of method should take the available data and the end user’s preferences into account.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | Workshop on Interpretability of Machine Intelligence in Medical Image Computing at MICCAI 2023 |
Keywords | concept-based explanations, diabetic retinopathy, Explainable artificial intelligence |
Neighborhood Graph Filters based Graph Convolutional Neural Networks for Multi-Agent Deep Reinforcement Learning
In IEEE Conference of Industrial Electronics Society (IECON), 2023.Status: Accepted
Neighborhood Graph Filters based Graph Convolutional Neural Networks for Multi-Agent Deep Reinforcement Learning
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE Conference of Industrial Electronics Society (IECON) |
Proceedings, refereed
Investigative Interviews using a Multimodal Virtual Avatar
In American Psychology-Law Society Conference 2022. Denver USA,: American Psychology-Law Society, 2022.Status: Accepted
Investigative Interviews using a Multimodal Virtual Avatar
To meet best-practice standards, we are developing an interactive virtual avatar aiming as a training tool to raise interviewing skills of child-welfare and law-enforcement professionals. Therefore, we present the “Ilma” avatar that recognizes interviewers’ behavior during open-ended, closed and leading questions, and which can automatically respond to the conversation. We conducted a user study in which master students (N=3) and child protective workers (N=8) interviewed “Ilma” and rated their perception of the interaction. The results show that the participants valued the interaction and found the avatar useful. Thus, it has great potential to be an effective training tool.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | American Psychology-Law Society Conference 2022 |
Publisher | American Psychology-Law Society |
Place Published | Denver USA, |
Joint Learning of Topology and Invertible Nonlinearities from Multiple Time Series
In IEEE International Conference on Machine Learning, Optimization, and Data Science (ISMODE), 2022.Status: Accepted
Joint Learning of Topology and Invertible Nonlinearities from Multiple Time Series
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | IEEE International Conference on Machine Learning, Optimization, and Data Science (ISMODE) |
Notes | This work is a joint collaboration between SimulaMet and University of Agder. This work was supported by the IKTPLUSS INDURB grant 270730/O70 and the SFI Offshore Mechatronics grant 237896/O30 from the Research Council of Norway. |
Proceedings, refereed
DivergentNets: Medical Image Segmentation by Network Ensemble
In EndoCV, 2021.Status: Accepted
DivergentNets: Medical Image Segmentation by Network Ensemble
Detection of colon polyps has become a trending topic in the intersecting fields of machine learning and gastrointestinal endoscopy. The focus has mainly been on per-frame classification. More recently, polyp segmentation has gained attention in the medical community. Segmentation has the advantage of being more accurate than per-frame classification or object detection as it can show the affected area in greater detail. For our contribution to the EndoCV 2021 segmentation challenge, we propose two separate approaches. First, a segmentation model named TriUNet composed of three separate UNet models. Second, we combine TriUNet with an ensemble of well-known segmentation models, namely UNet++, FPN, DeepLabv3, and DeepLabv3+, into a model called DivergentNets to produce more generalizable medical image segmentation masks. In addition, we propose a modified Dice loss that calculates loss only for a single class when performing multi-class segmentation, forcing the model to focus on what is most important. Overall, the proposed methods achieved the best average scores for each respective round in the challenge, with TriUNet being the winning model in Round I and DvergentNets being the winning model in Round II of the segmentation generalization challenge at EndoCV 2021
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | EndoCV |