A database for publications published by researchers and students at SimulaMet.
Research area
Publication type
- All (547)
- Journal articles (129)
- Books (5)
- Edited books (2)
- Proceedings, refereed (141) Remove Proceedings, refereed <span class="counter">(141)</span> filter
- Book chapters (4)
- Talks, keynote (11)
- PhD theses (4)
- Proceedings, non-refereed (15)
- Posters (5)
- Technical reports (13)
- Talks, invited (145)
- Talks, contributed (14)
- Public outreach (48)
- Miscellaneous (11)
Proceedings, refereed
On the realization of Cloud-RAN on Mobile Edge Computing
In International Conference on Advanced Information Networking and Applications (AINA-2023). 655th ed. Vol. 3. Lecture Notes in Networks and Systems: Springer, 2023.Status: Published
On the realization of Cloud-RAN on Mobile Edge Computing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | International Conference on Advanced Information Networking and Applications (AINA-2023) |
Volume | 3 |
Edition | 655 |
Date Published | 03/2023 |
Publisher | Springer |
Place Published | Lecture Notes in Networks and Systems |
ISBN Number | 978-3-031-28693-3 |
PRINCIPIA: Opportunistic CPU and CPU-shares Allocation for Containerized Virtualization in Mobile Edge Computing
In IEEE/IFIP Network Operations and Management Symposium. IEEE, 2023.Status: Accepted
PRINCIPIA: Opportunistic CPU and CPU-shares Allocation for Containerized Virtualization in Mobile Edge Computing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE/IFIP Network Operations and Management Symposium |
Publisher | IEEE |
Proactive Resource Orchestration Framework for Cloud/Fog Platform
In Proceedings of the 28th IEEE Symposium on Computers and Communications (ISCC). Tunis/Tunisia: IEEE, 2023.Status: Accepted
Proactive Resource Orchestration Framework for Cloud/Fog Platform
Cloud computing makes complex computing an off-premise activity by offering software- and hardware-based services using standard security protocols over the Internet. It has been seen that the cloud is not ideal for latency-sensitive applications. Thanks to the current growth of network communication and infrastructure, fog adds a computing resource delegation layer between the user and the cloud. Fog aims to improve latency-sensitive applications support. Here, we propose one unified, proactive resource orchestration framework from a cloud/fog service provider perspective. The framework consists of a predictor and a resource allocator module. Users subscribe to these resources to execute their applications. The framework does not require application-specific information and is modular, meaning a service provider can customise each module. We have presented the framework prototype by showing each module's simulated performance results using the parameters of our cloud/fog research test bed.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | Proceedings of the 28th IEEE Symposium on Computers and Communications (ISCC) |
Publisher | IEEE |
Place Published | Tunis/Tunisia |
Keywords | Cloud, Fog, Orchestration, Prediction, Resource Allocation |
A Scalable Data Collection System for Continuous State of Polarisation Monitoring
In Proceedings of the 23rd International Conference on Transparent Optical Networks (ICTON). Bucharest/Romania, 2023.Status: Accepted
A Scalable Data Collection System for Continuous State of Polarisation Monitoring
Our dependency on the telecommunication infrastructure is continuously increasing, as different infrastructures – such as energy and telecommunication – now have mutual dependencies. This calls for increased monitoring of the fibre network, which is a highly critical part of the infrastructure. State of Polarisation (SoP) of light propagating through fibre transmission systems is impacted by any vibrations and mechanical impacts on the fibre. By continuously monitoring the SoP, any unexpected movements of a fibre along a fibre-path may be traced. Movements may be caused by e.g. work in node-rooms impacting patch-cords, trawlers or other types of sub-sea equipment touching or hooking into sub-sea fibre cables, digging close to a fibre-cable, or geophysical phenomena like earthquakes. In this paper, we describe a low-cost, scalable system for SoP monitoring and give examples of patterns monitored in different types of fibre infrastructures. The monitoring system consists of single-unit rack-mount instruments connected to taps from live optical transmission signals. Each instrument has local storage for 1-2 years of data, and is periodically automatically uploading data to a server for backup and data-access purposes. Examples of observed patterns are impact from a thunderstorm on a Fibre-To-The-Home (FTTH) cable, 50 Hz on a fibre-cable spun around a high-voltage power air-cable, as well as animal impact on a patch-cord.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, GAIA, SMIL: SimulaMet Interoperability Lab |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | Proceedings of the 23rd International Conference on Transparent Optical Networks (ICTON) |
Date Published | 07/2023 |
Place Published | Bucharest/Romania |
A 10-Layer Model for Service Availability Risk Management
In 20th International Conference on Security and Cryptography, 2023.Status: Accepted
A 10-Layer Model for Service Availability Risk Management
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | 20th International Conference on Security and Cryptography |
Longitudinal Analysis of Inter-City Network Delays
In Network Traffic Measurement and Analysis Conference (TMA). IEEE/IFIP, 2023.Status: Accepted
Longitudinal Analysis of Inter-City Network Delays
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | Network Traffic Measurement and Analysis Conference (TMA) |
Publisher | IEEE/IFIP |
Keywords | big network data analysis, Internet measurements, longitudinal analysis, RTT delay |
Proceedings, refereed
Find Out: How Do Your Data Packets Travel?
In Proceedings of the 18th IEEE International Conference on Network and Service Management (CNSM). Thessaloniki, Greece: IEEE, 2022.Status: Published
Find Out: How Do Your Data Packets Travel?
In today's communication-centric world, users generate and exchange a huge amount of data. The Internet helps user data to travel from one part of the world to another via a complex setting of network systems. These systems are intelligent, heterogeneous, and non-transparent to users. In this paper, we present an extensive trace-driven study of user data traffic covering five years of observations, six large ISPs, 21 different autonomous systems, and a total of 13 countries. The aim of this work is to make users aware about how their data travels in the Internet, as the data traffic path is majorly influenced by the interests of ISPs. We showed that shortest land distance between the two countries does not impact data path selection, while data traffic prefers to travel even though country do not share land borders.
Afilliation | Communication Systems |
Project(s) | NorNet, GAIA, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 18th IEEE International Conference on Network and Service Management (CNSM) |
Date Published | 11/2022 |
Publisher | IEEE |
Place Published | Thessaloniki, Greece |
ISBN Number | 978-3-903176-51-5 |
Keywords | connectivity, Data, Internet, Packets, Routing, Traffic Paths |
Towards a Blockchain and Fog-Based Proactive Data Distribution Framework for ICN
In Proceedings of the International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). Sendai/Japan, 2022.Status: Published
Towards a Blockchain and Fog-Based Proactive Data Distribution Framework for ICN
Most of today's IP traffic is cloud traffic. Due to a vast, complex and non-transparent Internet infrastructure, securely accessing and delegating data is not a trivial task. Existing technologies of Information-Centric Networking (ICN) make content distribution and access easy while primarily relying on the existing cloud-based security features. The primary aim of ICN is to make data independent of its storage location and application. ICN builds upon traditional distributed computing, which means ICN platforms also can suffer from similar data security issues as distributed computing platforms. We present our ongoing work to develop a secure, proactive data distribution framework. The framework answers the research question, i.e., How to extend online data protection with a secure data distribution model for the ICN platform? Our framework adds a data protection layer over the content distribution network, using blockchain and relying on the fog to distribute the contents with low latency. Our framework is different from the existing works in multiple aspects, such as i) data are primarily distributed from the fog nodes, ii) blockchain is used to protect data and iii) blockchain allows statistical and other information sharing among stakeholders (such as content creators) following access rights. Sharing statistics about content distribution activity can bring transparency and trustworthiness among the stakeholders, including the subscribers, into the ICN platforms. We showed such a framework is possible by presenting initial performance results and our reflections while implementing it on a cloud/fog research testbed.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, GAIA |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) |
Place Published | Sendai/Japan |
Keywords | blockchain, Data, Distribution, Fog, ICN, Protection |
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
In Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA). Sydney, New South Wales/Australia: Springer, 2022.Status: Published
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
Energy-efficient computing model is a popular choice for high performance as well as throughput oriented computing ecosystems. Mobile (computing) devices are becoming increasingly ubiquitous to our computing domain, but with limited resources (true both for computation as well as for energy). Hence, workload offloading from resource-constrained mobile devices to the Edge and maybe (later) to the cloud become necessary as well as useful. Thanks to the persistent technical breakthroughs in global wireless standards (or in mobile networks) together with the almost limitless amount of resources in public cloud platforms, workload offloading is possible and cheaper. In such scenarios, Mobile Edge Computing (MEC) resources could be provisioned in proximity to the users for supporting latency-sensitive applications. Here, two relevant problems could be: i) How to distribute workload to the resource pools of MEC as well as public (multi-)clouds? ii) How to manage such resource pools effectively? To answer these problems in this paper, we examine the performance of our proposed approach using the Reliable Server Pooling (RSerPool) framework in more detail. We also have outlined the resource pool management policies to effectively use RSerPool for workload offloading from mobile devices into the cloud/MEC ecosystem.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA) |
Publisher | Springer |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud computing, Load Distribution, Mobile Edge Computing (MEC), Multi-Cloud Computing, Reliable Server Pooling (RSerPool), Serverless Computing |
Towards a Privacy Preserving Data Flow Control via Packet Header Marking
In Proceedings of the 24th International Conference on High Performance Computing, Data, and Analytics (HPCC). Chengdu, Sichuan/People's Republic of China: IEEE, 2022.Status: Published
Towards a Privacy Preserving Data Flow Control via Packet Header Marking
{Computing infrastructure is becoming ubiquitous thanks to the advancement in computing and the network domain. Reliable network communication is essential to offer good quality services, but it is not trivial. There are privacy concerns. Metadata may leak user information even if traffic is encrypted. Some countries have data privacy preserving-related regulations, but end-users cannot control through which path, networks, and hardware their data packets should travel. Even worse, the user cannot declare their privacy preferences. This paper presents an approach to tackle such privacy issues through data privacy-aware routing. The user can specify their preferences for packet routing using marking and filtering. Routing can work according to such specifications. It is implemented by P4, allowing a vendor-independent realisation with standard off-the-shelf hardware and open-source software components. We presented the initial experimental results of a proof-of-concept run on a unified cloud/fog research testbed.}
Afilliation | Communication Systems |
Project(s) | NorNet, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, The Center for Resilient Networks and Applications, GAIA |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 24th International Conference on High Performance Computing, Data, and Analytics (HPCC) |
Publisher | IEEE |
Place Published | Chengdu, Sichuan/People's Republic of China |
Keywords | Cloud, Data, Fog, P4, Packets, Privacy, Routing |