A database for publications published by researchers and students at SimulaMet.
Research area
Publication type
- All (390)
- Journal articles (142)
- Books (2)
- Edited books (1)
- Proceedings, refereed (175) Remove Proceedings, refereed <span class="counter">(175)</span> filter
- Book chapters (6)
- Talks, keynote (1)
- PhD theses (5)
- Proceedings, non-refereed (2)
- Posters (9)
- Talks, invited (20)
- Talks, contributed (15)
- Public outreach (3)
- Master's theses (1)
- Miscellaneous (8)
Proceedings, refereed
Detecting human embryo cleavage stages using YOLO v5 object detection algorithm
In Nordic Artificial Intelligence Research and Development. Springer, 2023.Status: Published
Detecting human embryo cleavage stages using YOLO v5 object detection algorithm
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | Nordic Artificial Intelligence Research and Development |
Pagination | 81-93 |
Publisher | Springer |
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
In IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023), 2023.Status: Accepted
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
Meibomian gland dysfunction is the most common cause of dry eye disease, which is a prevalent condition that can damage the ocular surface and cause reduced vision and substantial pain. Meibum secreted from the meibomian glands makes up the majority of the outer, protective lipid layer of the tear film. Changes in the secreted meibum and markers of glandular damage can be detected through tear sampling.
Several studies have investigated the tear film protein expression in meibomian gland dysfunction, but less work apply machine learning to analyze the protein patterns. We use machine learning and methods from explainable artificial intelligence to detect potential clinically relevant proteins in meibomian gland dysfunction. Two different explainable artificial intelligence methods are compared. Several of the proteins found important in the models have been linked to dry eye disease in the past, while some are novel. Consequently, explainable artificial intelligence methods serve as a promising tool for screening for proteins that are relevant for meibomian gland dysfunction. By doing so, one may be able to discover new biomarkers and treatments, and gain a better understanding of how diseases develop.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023) |
Keywords | Dry eye disease, Explainable artificial intelligence, Machine learning, meibomian gland dysfunction, proteomics |
PARAFAC2-based coupled Matrix and Tensor Factorizations
In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.Status: Published
PARAFAC2-based coupled Matrix and Tensor Factorizations
Afilliation | Machine Learning |
Project(s) | Department of Data Science and Knowledge Discovery , TrACEr: Time-Aware ConstrainEd Multimodal Data Fusion |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
Pagination | 1-5 |
Publisher | IEEE |
DOI | 10.1109/ICASSP49357.2023.10094562 |
Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
In International conference on multimedia modeling. Springer International Publishing, 2023.Status: Published
Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
High-quality tabular data is a crucial requirement for developing data-driven applications, especially healthcare-related ones, because most of the data nowadays collected in this context is in tabular form. However, strict data protection laws complicates the access to medical datasets. Thus, synthetic data has become an ideal alternative for data scientists and healthcare professionals to circumvent such hurdles. Although many healthcare institutions still use the classical de-identification and anonymization techniques for generating synthetic data, deep learning-based generative models such as generative adversarial networks (GANs) have shown a remarkable performance in generating tabular datasets with complex structures. This paper examines the GANs’ potential and applicability within the healthcare industry, which often faces serious challenges with insufficient training data and patient records sensitivity. We investigate several state-of-the-art GAN-based models proposed for tabular synthetic data generation. Healthcare datasets with different sizes, numbers of variables, column data types, feature distributions, and inter-variable correlations are examined. Moreover, a comprehensive evaluation framework is defined to evaluate the quality of the synthetic records and the viability of each model in preserving the patients’ privacy. The results indicate that the proposed models can generate synthetic datasets that maintain the statistical characteristics, model compatibility and privacy of the original data. Moreover, synthetic tabular healthcare datasets can be a viable option in many data-driven applications. However, there is still room for further improvements in designing a perfect architecture for generating synthetic tabular data.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | International conference on multimedia modeling |
Publisher | Springer International Publishing |
Keywords | deep learning, Medical data, synthetic data generation |
DOI | 10.1007/978-3-031-27077-2_34 |
ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset
In International Conference on Multimedia Modeling (MMM). Vol. 13833. Cham: Springer International Publishing, 2023.Status: Published
ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset
Nowadays, most people have a smartphone that can track their everyday activities. Furthermore, a significant number of people wear advanced smartwatches to track several vital biomarkers in addition to activity data. However, it is still unclear how these data can actually be used to improve certain aspects of people’s lives. One of the key challenges is that the collected data is often massive and unstructured. Therefore, a link to other important information (e.g., when, what, and how much food was consumed) is required. It is widely believed that such detailed and structured longitudinal data about a person is essential to model and provide personalized and precise guidance. Despite the strong belief of researchers about the power of such a data-driven approach, respective datasets have been difficult to collect. In this study, we present a unique dataset from two individuals performing a structured data collection over eight and a half months. In addition to the sensor data, we collected their nutrition, training, and well-being data. The availability of nutrition data with many other important objectives and subjective longitudinal data streams may facilitate research related to food for a healthy lifestyle. Thus, we present a sport, nutrition, and lifestyle logging dataset called ScopeSense from two individuals and discuss its potential use. The dataset is fully open for researchers, and we consider this study as a potential starting point for developing methods to collect and create knowledge for a larger cohort of people.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | International Conference on Multimedia Modeling (MMM) |
Volume | 13833 |
Pagination | 502 - 514 |
Publisher | Springer International Publishing |
Place Published | Cham |
ISBN Number | 978-3-031-27076-5 |
ISSN Number | 0302-9743 |
URL | https://link.springer.com/content/pdf/10.1007/978-3-031-27077-2https://l... |
DOI | 10.1007/978-3-031-27077-210.1007/978-3-031-27077-2_39 |
Predicting Meibomian Gland Dropout and Feature Importance Analysis with Explainable Artificial Intelligence
In IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023), 2023.Status: Accepted
Predicting Meibomian Gland Dropout and Feature Importance Analysis with Explainable Artificial Intelligence
Dry eye disease is a common and potentially debilitating medical condition. Meibum secreted from the meibomian glands is the largest contributor to the outermost, protective lipid layer of the tear film. Dysfunction of the meibomian glands is the most common cause of dry eye disease. As meibomian gland dysfunction progresses, gradual atrophy of the glands is observed. The meibomian glands are commonly visualized through meibography, a technique requiring specialist equipment and knowledge that might not be available to the physician. In the present project we use machine learning on clinical tabular data to predict the degree of meibomian gland dropout. Moreover, we employ explainable artificial intelligence on the best performing algorithms for feature importance evaluation. The best performing algorithms were AdaBoost, multilayer perceptron and LightGBM which outperformed the majority vote baseline classifier in every included evaluation metric for both multioutput and binary classification. Through explainable artificial intelligence known associations are validated and novel connections identified and discussed.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023) |
Keywords | Dry eye disease, Explainable artificial intelligence, Machine learning, meibography, meibomian gland dysfunction |
Predicting the degree of meibomian gland dropout with artificial intelligence
In ARVO Annual Meeting, 2023.Status: Published
Predicting the degree of meibomian gland dropout with artificial intelligence
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | ARVO Annual Meeting |
Using explainable artificial intelligence (XAI) to explore factors affecting meibomian gland (MG) dropout
In ARVO Annual Meeting, 2023.Status: Published
Using explainable artificial intelligence (XAI) to explore factors affecting meibomian gland (MG) dropout
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | ARVO Annual Meeting |
Multimedia datasets: challenges and future possibilities
In International conference on multimedia modeling, 2023.Status: Published
Multimedia datasets: challenges and future possibilities
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | International conference on multimedia modeling |
DOI | 10.1007/978-3-031-27818-1_58 |
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
In MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing. IEEE, 2023.Status: Accepted
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
Afilliation | Machine Learning |
Project(s) | Department of Data Science and Knowledge Discovery , TrACEr: Time-Aware ConstrainEd Multimodal Data Fusion |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing |
Publisher | IEEE |