A database for publications published by researchers and students at SimulaMet.
Status
Research area
Publication type
- All (370) Remove All <span class="counter">(370)</span> filter
- Journal articles (136)
- Books (2)
- Edited books (1)
- Proceedings, refereed (165)
- Book chapters (6)
- Talks, keynote (1)
- PhD theses (5)
- Proceedings, non-refereed (2)
- Posters (8)
- Talks, invited (18)
- Talks, contributed (15)
- Public outreach (3)
- Miscellaneous (8)
Journal articles
Live Streaming Technology and Online Child Sexual Exploitation and Abuse - A Scoping Review
Trauma, Violence, & Abuse (2023).Status: Accepted
Live Streaming Technology and Online Child Sexual Exploitation and Abuse - A Scoping Review
Livestreaming of child sexual abuse is an established form of online child sexual exploitation
and abuse. However, only a limited body of research has examined this issue. The Covid-19
pandemic has accelerated internet use and user knowledge of livestreaming services
emphasising the importance of understanding this crime. In this scoping review, existing
literature was brought together through an iterative search of eight databases containing peer-
reviewed journal articles, as well as grey literature. Records were eligible for inclusion if the
primary focus was on livestream technology and online child sexual exploitation and abuse,
the child being defined as eighteen years or younger. Fourteen of the 2,218 records were
selected. The data were charted and divided into four categories: victims, offenders,
legislation, and technology. Limited research, differences in terminology, study design, and
population inclusion criteria present a challenge to drawing general conclusions on the
current state of livestreaming of child sexual abuse. The records show that victims are
predominantly female. The average livestream offender was found to be older than the
average online child sexual abuse offender. Therefore, it is unclear whether the findings are
representative of the global population of livestream offenders. Furthermore, there appears to
be a gap in what the records show on platforms and payment services used and current digital
trends. The lack of a legal definition and privacy considerations pose a challenge to
investigation, detection, and prosecution. The available data allow some insights into a
potentially much larger issue.
Afilliation | Communication Systems, Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Trauma, Violence, & Abuse |
Publisher | SAGE Publications |
Training Performance Indications for Amateur Athletes Based on Nutrition and Activity Lifelogs
Algorithms, no. 1 (2023): 30.Status: Published
Training Performance Indications for Amateur Athletes Based on Nutrition and Activity Lifelogs
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Algorithms |
Issue | 1 |
Pagination | 30 |
Date Published | Jan-01-2023 |
Publisher | MDPI |
URL | https://www.mdpi.com/1999-4893/16/1/30 |
DOI | 10.3390/a16010030 |
MatCoupLy: Learning coupled matrix factorizations with Python
SoftwareX 21, no. 101294 (2023).Status: Published
MatCoupLy: Learning coupled matrix factorizations with Python
Afilliation | Machine Learning |
Project(s) | Department of Data Science and Knowledge Discovery |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | SoftwareX |
Volume | 21 |
Issue | 101294 |
Date Published | Feb-01-2023 |
Publisher | Elsevier |
ISSN | 2352-7110 |
URL | https://linkinghub.elsevier.com/retrieve/pii/Shttps://www.sciencedirect.... |
DOI | 10.1016/j.softx.2022.101292 |
A multi-center polyp detection and segmentation dataset for generalisability assessment
Nature Scientific Data 10 (2023).Status: Published
A multi-center polyp detection and segmentation dataset for generalisability assessment
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Nature Scientific Data |
Volume | 10 |
Publisher | Nature |
URL | https://doi.org/10.1038/s41597-023-01981-y |
DOI | 10.1038/s41597-023-01981-y |
Approximate Bayesian Inference Based on Expected Evaluation
Bayesian Analysis 1, no. 1 (2023).Status: Published
Approximate Bayesian Inference Based on Expected Evaluation
Approximate Bayesian computing (ABC) and Bayesian Synthetic likelihood (BSL) are two popular families of methods to evaluate the posterior distribution when the likelihood function is not available or tractable. For existing variants of ABC and BSL, the focus is usually first put on the simulation algorithm, and after that the form of the resulting approximate posterior distribution comes as a consequence of the algorithm. In this paper we turn this around and firstly define a reasonable approximate posterior distribution by studying the distributional properties of the expected discrepancy, or more generally an expected evaluation, with respect to generated samples from the model. The resulting approximate posterior distribution will be on a simple and interpretable form compared to ABC and BSL.
Secondly a Markov chain Monte Carlo (MCMC) algorithm is developed to simulate from the resulting approximate posterior distribution. The algorithm was evaluated on a synthetic data example and on the Stepping Stone population genetics model, demonstrating that the proposed scheme has real world applicability. The algorithm demonstrates competitive results with the BSL and sequential Monte Carlo ABC algorithms, but is outperformed by the ABC MCMC.
Afilliation | Communication Systems, Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Bayesian Analysis |
Volume | 1 |
Issue | 1 |
Date Published | Jan-01-2023 |
Publisher | Project euclid |
URL | https://projecteuclid.org/journals/bayesian-analysis/volume--1/issue--1/... |
DOI | 10.1214/23-BA1368 |
Unsupervised EHR-based Phenotyping via Matrix and Tensor Decompositions
WIREs Data Mining and Knowledge Discovery (2023).Status: Accepted
Unsupervised EHR-based Phenotyping via Matrix and Tensor Decompositions
Afilliation | Machine Learning |
Project(s) | Department of Data Science and Knowledge Discovery , DeCipher |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | WIREs Data Mining and Knowledge Discovery |
Publisher | Wiley |
URL | https://arxiv.org/abs/2209.00322 |
Energy-efficient online control of a water distribution network based on Deep Reinforcement Learning
IEEE Internet of Things Journal (2023).Status: Submitted
Energy-efficient online control of a water distribution network based on Deep Reinforcement Learning
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | IEEE Internet of Things Journal |
Publisher | IEEE Internet of Things Journal |
Notes | This work is a joint collaboration between SimulaMet and University of Agder. This work was supported by the IKTPLUSS INDURB grant 270730/O70 from the Research Council of Norway. |
Distributed Linear Network Operators via Successive Graph Shift Matrices
IEEE Transactions on Signal and Information Processing over Networks 9 (2023): 315-328.Status: Published
Distributed Linear Network Operators via Successive Graph Shift Matrices
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | IEEE Transactions on Signal and Information Processing over Networks |
Volume | 9 |
Pagination | 315-328 |
Date Published | 04/2023 |
Publisher | IEEE Transactions on Signal and Information Processing over Networks |
ISSN | 2373-776X |
Notes | This work is a joint collaboration between SimulaMet and University of Agder. This work was supported by the PETROMAKS Smart-Rig grant 244205 and the IKTPLUSS INDURB grant 270730/O70 from the Research Council of Norway. |
DOI | 10.1109/TSIPN.2023.3271148 |
Sparse Online Learning with Kernels using Random Features for Estimating Nonlinear Dynamic Graphs
IEEE Transactions on Signal Processing (2023).Status: Accepted
Sparse Online Learning with Kernels using Random Features for Estimating Nonlinear Dynamic Graphs
Online topology estimation of graph-connected time series is challenging in practice, particularly because the dependencies between the time series in many real-world scenarios are nonlinear. To address this challenge, we introduce a novel kernel-based algorithm for online graph topology estimation. Our proposed algorithm also performs a Fourier-based random feature approximation to tackle the curse of dimensionality associated with kernel representations. Exploiting the fact that real-world networks often exhibit sparse topologies, we propose a group-Lasso based optimization framework, which is solved using an iterative composite objective mirror descent method, yielding an online algorithm with fixed computational complexity per iteration. We provide theoretical guarantees for our algorithm and prove that it can achieve sublinear dynamic regret under certain reasonable assumptions. In experiments conducted on both real and synthetic data, our method outperforms existing state-of-the-art competitors.
Afilliation | Machine Learning |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | IEEE Transactions on Signal Processing |
Publisher | IEEE |
Notes | This work is a joint collaboration between SimulaMet and University of Agder. This work was supported by the IKTPLUSS INDURB grant 270730/O70 and the SFI Offshore Mechatronics grant 237896/O30 from the Research Council of Norway. |
DOI | 10.36227/techrxiv.19210092.v3 |
Posters
Concept Explanations for Deep Learning-Based Diabetic Retinopathy Diagnosis
Nordic AI Meet 2023, 2023.Status: Accepted
Concept Explanations for Deep Learning-Based Diabetic Retinopathy Diagnosis
Diabetic retinopathy (DR) is a common complication of diabetes that damages the eye and potentially leads to blindness. The severity and treatment choice of DR depends on the presence of medical findings in fundus images. Much work has been done in developing complex machine learning (ML) models to automatically diagnose DR from fundus images. However, their high level of complexity increases the demand for techniques improving human understanding of the ML models. Explainable artificial intelligence (XAI) methods can detect weaknesses in ML models and increase trust among end users. In the medical field, it is crucial to explain ML models in order to apply them in the clinic. While a plethora of XAI methods exists, heatmaps are typically applied for explaining ML models for DR diagnosis. Heatmaps highlight image areas that are regarded as important for the model when making a prediction. Even though heatmaps are popular, they can be less appropriate in the medical field. Testing with Concept Activation Vectors (TCAV), providing explanations based on human-friendly concepts, can be a more suitable alternative for explaining models for DR diagnosis, but it has not been thoroughly investigated for DR models. We develop a deep neural network for diagnosing DR from fundus images and apply TCAV for explaining the resulting model. Concept generation with and without masking is compared. Based on diagnostic criteria for DR, we evaluate the model’s concept ranking for different severity levels of DR. TCAV can explain individual images to gain insight into a specific case, or an entire class to evaluate overall consistency with diagnostic standards. The most important concepts for the DR model agree with diagnostic criteria for DR. No large differences are detected between the two concept generation approaches. TCAV is a flexible explanation method where human-friendly concepts provide insights and trust in ML models for medical image analyses, and it shows promising results for DR grading.
Afilliation | Machine Learning |
Project(s) | Department of Holistic Systems |
Publication Type | Poster |
Year of Publication | 2023 |
Place Published | Nordic AI Meet 2023 |
Keywords | concept-based explanations, diabetic retinopathy, Explainable artificial intelligence |