A database for publications published by researchers and students at SimulaMet.
Status
Research area
Journal articles
Energy Efficient AoI Minimization in Opportunistic NOMA/OMA Broadcast Wireless Networks
IEEE Transactions on Green Communications and Networking (2021).Status: Accepted
Energy Efficient AoI Minimization in Opportunistic NOMA/OMA Broadcast Wireless Networks
The concept of Age of Information (AoI) minimization in wireless networks has garnered huge interest in recent times. While current literature focuses on scheduling for AoI minimization, there is also a need to efficiently utilize the underlying physical layer resources. In this paper, we consider the problem of energy-efficient scheduling for AoI minimization in an opportunistic NOMA/OMA downlink broadcast wireless network, where the user equipment operate with diverse QoS requirements. We first formulate a resource allocation problem to minimize the average AoI of the network, with energy-efficiency factored in by restricting the long term average transmit power to a predetermined threshold. A heuristic adaptation of the driftplus-penalty approach from the Lyapunov framework is then utilized to solve the original long-term mixed-integer nonlinear problem on a per time-slot basis. The single time-slot problem is further decomposed into multiple sub-problems, solving for power allocation and user scheduling separately. However, the attained power allocation sub-problems being non-convex, we propose an efficient piece-wise linear approximation to obtain a tractable solution. The scheduling sub-problem is solved optimally by using the integrality property of the linear program. Finally, we provide extensive numerical simulations to show that our proposed approach outperforms the state of the art.
Afilliation | Communication Systems |
Project(s) | Signal and Information Processing for Intelligent Systems |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | IEEE Transactions on Green Communications and Networking |
Publisher | IEEE |
Place Published | IEEE Transactions on Green Communications and Networking |
Notes | This research work was carried out at University of Agder and completed after the SIGIPRO Department was created. This work was supported by the Research Council of Norway through FRIPRO TOPPFORSK under Grant WISECART 250910/F20. |
DOI | 10.1109/TGCN.2021.3135351 |
Proceedings, refereed
Optical Fibre as a Sensor for Network Anomaly Detection
In ACM SIGCOMM 2020 Workshop on Optical Systems Design, 2020.Status: Accepted
Optical Fibre as a Sensor for Network Anomaly Detection
Optical fibres are the backbone of modern Information Technology infrastructure connecting billions of users through high-speed networks. With a drastic increase in the number of internet users, vulnerability and security issues in the optical fibre network become increasingly important. In this paper, we propose a detection method for early warning of anomalies in optical networks. The method is based on monitoring and analyzing changes in the state of polarization of the optical signal targeting differentiating between different physical impacts and movements of the fibre caused by e.g. eavesdropping, cut by digging and thunderstorms.
Afilliation | Communication Systems |
Project(s) | GAIA, The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | ACM SIGCOMM 2020 Workshop on Optical Systems Design |
Technical reports
Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP
IETF, 2017.Status: Accepted
Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, RITE: Reducing Internet Transport Latency |
Publication Type | Technical reports |
Year of Publication | 2017 |
Number | draft-ietf-tsvwg-ecn-encap-guidelines-08 |
Publisher | IETF |
Keywords | Architecture, congestion, Control, Data Communication, Encapsulation, Explicit Notification, Internet, Layering, Management, Monitoring, networks, Protocol Engineering, QoS, Tunnels |
Notes | (Work in Progress) |
URL | http://tools.ietf.org/html/draft-ietf-tsvwg-ecn-encap-guidelines |
Proceedings, refereed
TCP with dynamic FEC For High Delay and Lossy Networks
In ACM CoNEXT Student Workshop, 2016.Status: Accepted
TCP with dynamic FEC For High Delay and Lossy Networks
Afilliation | , Communication Systems, Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2016 |
Conference Name | ACM CoNEXT Student Workshop |