Projects
SMIL: SimulaMet Interoperability Lab

Research objectives
The SimulaMet Interoperability lab (SMIL) support a wide range of research activities at SimulaMet, and will in particular address the following research areas:
- Benchmark and improve time-sensitive networking technologies for 5G networks between base stations and edge computing for 5G.
- Study and improve mechanisms for network slicing to ensure successful co-use of 5G networks for critical applications.
- Study how legacy computers can be used to realize Cloud Radio Access Networks by using software defined radio and lower cost of deployment by moving functionality from hardware to software. Of particular interest is real-time scheduling of Cloud RAN workloads in edge data centres.
- Study new 5G and IoT applications enabled by edge computing using features such as low latency, high throughput and quality of service guarantees combined with edge computing capabilities available in 5G cellular networks.
- Develop and improve self-driving networks for fast recovery with technologies such as SDN, P4 and Network Function Virtualization in combination with machine learning of large-scale data analytics of the entire networked system.
- Understand and improve mechanisms required to establish Robust cellular networks for reliable infrastructure for new user groups which relies on dependable networks.
Time sensitive networking
Traditionally, dedicated point-to-point connections using Common Public Radio Interface (CPRI) have been used to interconnect smart cellular antennas to base stations. In 5G, the main infrastructure vendors have proposed e-CPRI, based on the Ethernet standard. With Ethernet, one would expect to leverage traditional switches for aggregation and simultaneous data transport in addition to e-CPRI, but Ethernet and legacy switches are not built for the timing requirements of 5G. To overcome this problem, different technologies have been suggested to enable Time Sensitive Networking (TSN) with Ethernet as the transport technology. In this research activity, we study how TSN can be realized in 5G front haul networks, combining the requirements of synchronization, bound latency in combination with traditional best-effort packet transport. In the laboratory we collaborate with TransPacket for access to FPGA-based implementations of TSN using the Fusion network technology implemented in Xilinx FPGAs enabling 100 Gbit/s Ethernet transport aggregating 5G base stations using 10Gbit/s ethernet with guaranteed transport service.

Network slicing
In 5G networks, the concept of Network slicing enables different classes of applications to share the same physical network. 5G is expected to be able to handle applications like emergency networks, real-time industry applications in combination with supporting demanding multimedia applications for consumers. These requirements require ability to express and enforce Quality of Service requirements ranging from frequency resource allocation, 5G base station resource allocation, network quality of service and allocation of processing resources in edge computers.
Initial work has focused on SDN-based implementations using the opensource Open Air interface, and future work will extend this to network slicing in 5G-NR and 5G front-haul and back-haul network guarantees for network slicing.
Cloud Radio Access Networks (Cloud RAN)
Cloud RAN enable the use of general purpose computers placed in edge data centres for realizing virtualized radio functions by using software defined radio techniques to lower cost of deployment by moving functionality from hardware to software. Of a particular interest to our research group is real-time scheduling of Cloud RAN workloads, how to partition between real-time and non-real-time workloads in the Cloud RAN, and how to handle the strict requirements to enable services like Ultra Reliable Low Latency Communication (URLLC) which can enable new applications previously not possible in cellular networks. Vendors are already introducing Cloud RAN solutions, such as the Nokia AirScale CloudRAN , the 4G/5G C-RAN architecture from Ericsson and 5G oriented C-RAN solutions from Huawei. It is of a particular interest to study if such network architectures can be realized in a multi-vendor environment. At what level should interoperability be ensured? Can Virtual Network Functions from different vendors run in the same edge computer environment?
New 5G and IoT applications enabled by edge computing
With edge computing deployed in the distributed 5G networks, new 5G and IoT applications can be made possible since response times can be guaranteed, and computing resources can be made available close to the application. An example is the real-time application of collision avoidance for cars sharing their sensor data with a local edge data center which can execute collision avoidance algorithms within specified time deadlines to provide drivers or self-driving vehicles with time-critical information to avoid collision. Other applications like games using augmented reality and real-time collaboration in industrial applications can be enabled by low latency and high throughput communication service with processing in edge data centres. Finally, IoT sensors with very low power consumption can leverage high sensitivity 5G NR capabilities to provide very long battery life for embedded applications. In SMIL, we will collaborate with other research groups and the 5G industry to investigate applications previously not possible in cellular networks and suggest improvements to applications and networks.
Self-driving Networks
The complexity of configuration and adjustment of telecommunication networks to respond to rapid changes in demand has led to the vision of Self-driving networks which measure, analyze and control themselves in an automated manner. Self-driving networks can react to changes in the environment (e.g., demand), while exploiting existing flexibilities to optimize themselves. Furthermore, the advent of large-scale machine learning can also benefit self-driving networks and over time develop to faster reconfiguration and more reliable operation compared to manual configuration by human operators, see for example the paper Why (and How) Networks Should Run Themselves for an in-depth discussion.
This method is of particular interest in 5G to ensure rapid reconfiguration in case of failure which requires automated response to demand, changes in geographic load in the network, change in network capacity and loss of connectivity with minimal impact for critical applications. The requirement for reconfiguration can also be used for business purposes, for example optimized use of software licenses, where an operator can install hardware at all relevant locations but deploy software licenses only for operation of a subset of this hardware based on actual demand and moved with users. This research area is closely related to Software Defined Networking which until recently has focused mostly on the data plane with technologies such as OpenFlow and Netconf/Yang.

Recent developments such as the Programming Protocol-independent Packet Processors language (P4) has enabled software control also of the data plane which opens for software defined processing in the actual packet flow. In SMIL, we plan to leverage these advances together from SDN controllers such as OpenDaylight to enable Self-driving networks for access and transport networks for 5G. In the laboratory, we will use the latest MX-series routers from Juniper Networks with P4 capabilites to explore self-driving networks for 5G.
Robust cellular networks
New user groups are encouraged to share a common infrastructure to save cost and leverage state of the art technologies. This trend increases the requirements of robustness of the underlying architecture since our society relies not only on critical consumer services like communication services, banking, shopping and logistics, but also applications traditionally served by dedicated networks such as military, emergency (e.g. TETRA) and railroad signalling networks (e.g. GSM-R) which all consider 5G as their network infrastructure in the future.
We believe Heterogeneous infrastructure has several benefits to ensure interoperability and open standards in 5G but this requirement also adds to the complexity of the network since different vendors may rely on different network structures, and different communication protocols even if they are defined by standard bodies such as 3GPP. When the goal of heterogenous infrastructure is added to requirements from new users, we can see that 5G represents very demanding requirements for the cellular operators and the network infrastructure vendors.

SimulaMet Centre for Resilient Networks and Applications have studied this topic over many years in fixed networks, in 4G cellular networks and for IoT applications. With the new laboratory, we will extend our studies to 5G New Radio and will also address how to provide robustness of the 5G core network by reducing the dependency for a centralized 5G infrastructure by virtualization.
Publications for SMIL: SimulaMet Interoperability Lab
Proceedings, refereed
Reliable Server Pooling Based Workload Offloading with Mobile Edge Computing: A Proof-of-Concept
In Proceedings of the 2nd International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 35th International Conference on Advanced Information Networking and Applications (AINA). Toronto, Ontario/Canada: Springer, 2021.Status: Published
Reliable Server Pooling Based Workload Offloading with Mobile Edge Computing: A Proof-of-Concept
In recent times, mobile broadband devices have become almost ubiquitous. However, battery-powered devices (such as smartphones), have limitations on energy consumption, computation power and storage space. Cloud computing, and in particular with the upcoming 5G networks, Mobile Edge Computing (MEC) can provide compute and storage services at the vicinity of the user (with a low communication latency). However, the complexity lies in how to simply and efficiently realise MEC services, with the auxiliary public (multi-)cloud resources? In this paper, we propose a proof-of-concept of using Reliable Server Pooling (RSerPool) as a light-weight layer of managing resource pools and handling application sessions with these pools. Our approach is simple, efficient, has low overhead and is available as open-source. Here, we demonstrate the usefulness of our approach by measuring in a test setup, with a 4G testbed connected to MEC and public multi-cloud resources.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab, 5G-VINNI: 5G Verticals INNovation Infrastructure , Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | Proceedings of the 2nd International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 35th International Conference on Advanced Information Networking and Applications (AINA) |
Publisher | Springer |
Place Published | Toronto, Ontario/Canada |
Keywords | 5G, Evolved Packet Core (EPC), Mobile Edge Computing (MEC), Multi-Cloud Computing, Network Function Virtualisation (NFV), Reliable Server Pooling (RSerPool) |
Talk, keynote
NorNet at Hainan University in 2021: From Simulations to Real-World Internet Measurements for Multi-Path Transport Research — A Remote Presentation
In Haikou, Hainan/People's Republic of China. Haikou, Hainan/People's Republic of China, 2021.Status: Published
NorNet at Hainan University in 2021: From Simulations to Real-World Internet Measurements for Multi-Path Transport Research — A Remote Presentation
A large fraction of the communication in the Internet is handled by the Transmission Control Protocol (TCP). Since the first deployments of this protocol more than 30 years ago, the spectrum of applications as well as the structure of the network have developed at a fast pace. For example, today's network devices, like smartphones and laptops — i.e. particularly many devices in the area of mobile computing — frequently have an interesting property: the existence of multiple IP addresses (IPv4 and/or IPv6). The addresses may even change due to mobility. This property, denoted as multi-homing, can be utilised for multi-path transport, i.e. the simultaneous usage of multiple paths in the network to improve performance. Multi-path transport is a hot topic in the Internet Engineering Task Force (IETF), which is the standardisation organisation for the Internet. This talk provides an overview of the work in the areas of multi-homing and multi-path transport, with focus on the area of the protocols TCP and Stream Control Transmission Protocol (SCTP) with their experimental extensions Multi-Path TCP (MPTCP) and Concurrent Multi-Path Transfer for SCTP (CMT-SCTP). It particularly shows the sequence of research and selected results, beginning from a simple simulation model, via lab setups and small Internet scenarios, up to the large-scale, international testbed project NorNet. NorNet, and particularly its landline network part NorNet Core, is furthermore described in some detail. Based on NorNet, it is finally possible to validate simulation results in real-world, multi-homed networks, in order to provide valuable input to the ongoing IETF standardisation processes of MPTCP and CMT-SCTP. Particularly, it will also show how the NorNet testbed can be utilised for research at Hainan University in 2021.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab |
Publication Type | Talk, keynote |
Year of Publication | 2021 |
Location of Talk | Haikou, Hainan/People's Republic of China |
Date Published | 01/2021 |
Place Published | Haikou, Hainan/People's Republic of China |
Keywords | Introduction, Multi-Homing, NorNet, NorNet Core, NorNet Edge, Status, Testbed |
Talks, invited
NorNet at Hainan University in 2021: Getting Started with NorNet Core — A Remote Tutorial
In Haikou, Hainan/People's Republic of China. Haikou, Hainan/People's Republic of China, 2021.Status: Published
NorNet at Hainan University in 2021: Getting Started with NorNet Core — A Remote Tutorial
This tutorial — presented for students at the College of Information Science and Technology (CIST) at Hainan University — provides an introduction on how to get access to the NorNet Core testbed as well as how to run experiments in the testbed in 2021.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab |
Publication Type | Talks, invited |
Year of Publication | 2021 |
Location of Talk | Haikou, Hainan/People's Republic of China |
Place Published | Haikou, Hainan/People's Republic of China |
Keywords | Multi-Homing, Multi-Path Transport, NorNet, NorNet Core, Testbed, Tutorial |
Proceedings, refereed
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
In Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN). Sydney, New South Wales/Australia: IEEE Computer Society, 2020.Status: Published
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
The Cloud-based Radio Access Network (Cloud-RAN) architecture and Network Function Virtualization (NFV) are key enablers to building future mobile networks in a flexible and cost-efficient way. With early deployments of the fifth generation of mobile technologies - 5G - around the world, setting up 4G/5G experimental infrastructures is necessary to optimally design 5G networks. In this demo, we present a custom small-scale 4G/5G testbed based on OpenAirInterface and Open Source MANO. The testbed integrates a Cloud-RAN based on switched Ethernet Xhaul and functional splitting, with an Evolved Packet Core (EPC) deployed as a Virtual Network Function (VNF) in a cloud infrastructure. Using Open Source MANO, this demo shows the administration and monitoring of the EPC VNF components. Moreover, as proof of concept, collection and visualization of telemetry will be shown for two smart-phones connected to the network through the Cloud-RAN.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 11/2020 |
Publisher | IEEE Computer Society |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud Radio Access Network (Cloud-RAN), Ethernet Xhaul, Fronthaul, Functional Splits, Network Function Virtualisation (NFV), Open Source MANO (OSM) |
Talks, invited
Custom-Made Enhanced Packet Cores as Network Services for 4G/5G Testbeds managed with Open Source MANO
In M5G-2020-Workshop (Online), 2020.Status: Published
Custom-Made Enhanced Packet Cores as Network Services for 4G/5G Testbeds managed with Open Source MANO
Setting up Enhanced Packet Cores (EPC) – like the Mosaic5G OpenAirInterface-based EPC – for 4G/5G Testbeds is a complicated and error-prone task. Therefore, we developed the SimulaMet OpenAirInterface VNF, a complex 4-VDU VNF, which upon instantiation builds the components of the EPC from scratch from given source Git repositories. That is, based on the parametrisation, users can easily create tailor-made EPCs for their projects, particularly EPCs based on the Mosaic5G FlexRAN sources. In this presentation, we would like to shortly highlight the solutions chosen to efficiently use OSM for handling the instantiation process, performing telemetry, and debugging issues. That is, we particularly would like to present to the Mosaic5G audience some lessons learned during the ongoing development.
Afilliation | Communication Systems |
Project(s) | NorNet, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering |
Publication Type | Talks, invited |
Year of Publication | 2020 |
Location of Talk | M5G-2020-Workshop (Online) |
Keywords | 5G, Evolved Packet Core, Network Function Virtualisation, Open Source MANO, OpenAirInterface |
Managing Tailor-Made Enhanced Packet Cores for 4G/5G Testbeds in OSM with the SimulaMet OpenAirInterface VNF
In OSM Hackfest (Online), 2020.Status: Published
Managing Tailor-Made Enhanced Packet Cores for 4G/5G Testbeds in OSM with the SimulaMet OpenAirInterface VNF
The SimulaMet OpenAirInterface VNF is a complex 4-VDU VNF, allowing its users to instantiate and maintain a tailor-made Enhanced Packet Core (EPC) for 4G/5G mobile broadband testbeds. The EPC components are directly built from their sources during instantiation, allowing to use customised versions according to the users' needs. A general overview has already been presented during the OSM Hackfest in March 2020. In this presentation and live demonstration, we would like to highlight the solutions chosen to efficiently use OSM for handling the instantiation process, provide telemetry, and to debug issues. That is, we particularly would like to present to the audience the lessons learned during the ongoing development. Finally, we would also like to show the audience a live demo of an OSM-managed 4G testbed setup with telemetry collection.
Afilliation | Communication Systems |
Project(s) | NorNet, 5G-VINNI: 5G Verticals INNovation Infrastructure , The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering |
Publication Type | Talks, invited |
Year of Publication | 2020 |
Location of Talk | OSM Hackfest (Online) |
Keywords | 5G, Evolved Packet Core, Network Function Virtualisation, Open Source MANO, OpenAirInterface |
URL | http://osm-download.etsi.org/ftp/osm-8.0-eight/OSM10-hackfest/EcosystemD... |
Publications
Proceedings, refereed
Evaluating the Cloud-RAN architecture: functional splitting and switched Ethernet Xhaul
In 16th International Conference on Network and Service Management, CNSM 2020. Izmir Turkey and Virtual Conference: IEEE/IFIP, 2020.Status: Published
Evaluating the Cloud-RAN architecture: functional splitting and switched Ethernet Xhaul
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | 16th International Conference on Network and Service Management, CNSM 2020 |
Date Published | 11/2020 |
Publisher | IEEE/IFIP |
Place Published | Izmir Turkey and Virtual Conference |
URL | http://dl.ifip.org/db/conf/cnsm/cnsm2020/1570663439.pdf |
Reprint Edition | http://dl.ifip.org/db/conf/cnsm/cnsm2020/1570663439.pdf |
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
In Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN). Sydney, New South Wales/Australia: IEEE Computer Society, 2020.Status: Published
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
The Cloud-based Radio Access Network (Cloud-RAN) architecture and Network Function Virtualization (NFV) are key enablers to building future mobile networks in a flexible and cost-efficient way. With early deployments of the fifth generation of mobile technologies - 5G - around the world, setting up 4G/5G experimental infrastructures is necessary to optimally design 5G networks. In this demo, we present a custom small-scale 4G/5G testbed based on OpenAirInterface and Open Source MANO. The testbed integrates a Cloud-RAN based on switched Ethernet Xhaul and functional splitting, with an Evolved Packet Core (EPC) deployed as a Virtual Network Function (VNF) in a cloud infrastructure. Using Open Source MANO, this demo shows the administration and monitoring of the EPC VNF components. Moreover, as proof of concept, collection and visualization of telemetry will be shown for two smart-phones connected to the network through the Cloud-RAN.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 11/2020 |
Publisher | IEEE Computer Society |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud Radio Access Network (Cloud-RAN), Ethernet Xhaul, Fronthaul, Functional Splits, Network Function Virtualisation (NFV), Open Source MANO (OSM) |
On the Accuracy of Country-Level IP Geolocation
In Applied Networking Research Workshop (ANRW). Madrid/Spain: ACM, 2020.Status: Published
On the Accuracy of Country-Level IP Geolocation
The proliferation of online services comprised of globally spread microservices has security and performance implications. Understanding the underlying physical paths connecting end points has become important. This paper investigates the accuracy of commonly used IP geolocation approaches in geolocating end-to-end IP paths. To this end, we perform a controlled measurement study to collect IP level paths. We find that existing databases tend to geolocate IPs that belong to networks with global presence and those move between networks erroneously. A small percentage of IP geolocation disagreement between databases results in a significant disagreement when geolocating end-to-end paths. Geolocating one week of RIPE traceroute data validates our observations.
Afilliation | Communication Systems |
Project(s) | GAIA, NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Applied Networking Research Workshop (ANRW) |
Date Published | 07/2020 |
Publisher | ACM |
Place Published | Madrid/Spain |
ISBN Number | 978-1-4503-8039-3 |
Keywords | Geolocation Approaches, Geolocation Databases, IP Geolocation |
DOI | 10.1145/3404868.3406664 |
Proceedings, refereed
Unicast Extensions to IP Multicast
In Proceedings of the Protocols for Multimedia Systems PROMS'2000. Krakow, Poland, 2000.Status: Published
Unicast Extensions to IP Multicast
Publication Type | Proceedings, refereed |
Year of Publication | 2000 |
Conference Name | Proceedings of the Protocols for Multimedia Systems PROMS'2000 |
Pagination | 60-69 |
Place Published | Krakow, Poland |
Notes | ISBN 83-88309-05-6 |
Proceedings, refereed
Wireless Experimental Metropolitan Area Network Using IPv6 in Norway (WEMAN)
In Proceedings of the Thirty-Second Annual Hawaii International Conference on System Sciences. Maui, Hawaii,, 1999.Status: Published
Wireless Experimental Metropolitan Area Network Using IPv6 in Norway (WEMAN)
Publication Type | Proceedings, refereed |
Year of Publication | 1999 |
Conference Name | Proceedings of the Thirty-Second Annual Hawaii International Conference on System Sciences |
Place Published | Maui, Hawaii, |
Talks, contributed
Preliminary Simulation Results of an SCI Based Clustered Database Machine
In International Workshop on Computer Architecture, 1995.Status: Published
Preliminary Simulation Results of an SCI Based Clustered Database Machine
Publication Type | Talks, contributed |
Year of Publication | 1995 |
Location of Talk | International Workshop on Computer Architecture |