Projects
SMIL: SimulaMet Interoperability Lab

Research objectives
The SimulaMet Interoperability lab (SMIL) support a wide range of research activities at SimulaMet, and will in particular address the following research areas:
- Benchmark and improve time-sensitive networking technologies for 5G networks between base stations and edge computing for 5G.
- Study and improve mechanisms for network slicing to ensure successful co-use of 5G networks for critical applications.
- Study how legacy computers can be used to realize Cloud Radio Access Networks by using software defined radio and lower cost of deployment by moving functionality from hardware to software. Of particular interest is real-time scheduling of Cloud RAN workloads in edge data centres.
- Study new 5G and IoT applications enabled by edge computing using features such as low latency, high throughput and quality of service guarantees combined with edge computing capabilities available in 5G cellular networks.
- Develop and improve self-driving networks for fast recovery with technologies such as SDN, P4 and Network Function Virtualization in combination with machine learning of large-scale data analytics of the entire networked system.
- Understand and improve mechanisms required to establish Robust cellular networks for reliable infrastructure for new user groups which relies on dependable networks.
Time sensitive networking
Traditionally, dedicated point-to-point connections using Common Public Radio Interface (CPRI) have been used to interconnect smart cellular antennas to base stations. In 5G, the main infrastructure vendors have proposed e-CPRI, based on the Ethernet standard. With Ethernet, one would expect to leverage traditional switches for aggregation and simultaneous data transport in addition to e-CPRI, but Ethernet and legacy switches are not built for the timing requirements of 5G. To overcome this problem, different technologies have been suggested to enable Time Sensitive Networking (TSN) with Ethernet as the transport technology. In this research activity, we study how TSN can be realized in 5G front haul networks, combining the requirements of synchronization, bound latency in combination with traditional best-effort packet transport. In the laboratory we collaborate with TransPacket for access to FPGA-based implementations of TSN using the Fusion network technology implemented in Xilinx FPGAs enabling 100 Gbit/s Ethernet transport aggregating 5G base stations using 10Gbit/s ethernet with guaranteed transport service.

Network slicing
In 5G networks, the concept of Network slicing enables different classes of applications to share the same physical network. 5G is expected to be able to handle applications like emergency networks, real-time industry applications in combination with supporting demanding multimedia applications for consumers. These requirements require ability to express and enforce Quality of Service requirements ranging from frequency resource allocation, 5G base station resource allocation, network quality of service and allocation of processing resources in edge computers.
Initial work has focused on SDN-based implementations using the opensource Open Air interface, and future work will extend this to network slicing in 5G-NR and 5G front-haul and back-haul network guarantees for network slicing.
Cloud Radio Access Networks (Cloud RAN)
Cloud RAN enable the use of general purpose computers placed in edge data centres for realizing virtualized radio functions by using software defined radio techniques to lower cost of deployment by moving functionality from hardware to software. Of a particular interest to our research group is real-time scheduling of Cloud RAN workloads, how to partition between real-time and non-real-time workloads in the Cloud RAN, and how to handle the strict requirements to enable services like Ultra Reliable Low Latency Communication (URLLC) which can enable new applications previously not possible in cellular networks. Vendors are already introducing Cloud RAN solutions, such as the Nokia AirScale CloudRAN , the 4G/5G C-RAN architecture from Ericsson and 5G oriented C-RAN solutions from Huawei. It is of a particular interest to study if such network architectures can be realized in a multi-vendor environment. At what level should interoperability be ensured? Can Virtual Network Functions from different vendors run in the same edge computer environment?
New 5G and IoT applications enabled by edge computing
With edge computing deployed in the distributed 5G networks, new 5G and IoT applications can be made possible since response times can be guaranteed, and computing resources can be made available close to the application. An example is the real-time application of collision avoidance for cars sharing their sensor data with a local edge data center which can execute collision avoidance algorithms within specified time deadlines to provide drivers or self-driving vehicles with time-critical information to avoid collision. Other applications like games using augmented reality and real-time collaboration in industrial applications can be enabled by low latency and high throughput communication service with processing in edge data centres. Finally, IoT sensors with very low power consumption can leverage high sensitivity 5G NR capabilities to provide very long battery life for embedded applications. In SMIL, we will collaborate with other research groups and the 5G industry to investigate applications previously not possible in cellular networks and suggest improvements to applications and networks.
Self-driving Networks
The complexity of configuration and adjustment of telecommunication networks to respond to rapid changes in demand has led to the vision of Self-driving networks which measure, analyze and control themselves in an automated manner. Self-driving networks can react to changes in the environment (e.g., demand), while exploiting existing flexibilities to optimize themselves. Furthermore, the advent of large-scale machine learning can also benefit self-driving networks and over time develop to faster reconfiguration and more reliable operation compared to manual configuration by human operators, see for example the paper Why (and How) Networks Should Run Themselves for an in-depth discussion.
This method is of particular interest in 5G to ensure rapid reconfiguration in case of failure which requires automated response to demand, changes in geographic load in the network, change in network capacity and loss of connectivity with minimal impact for critical applications. The requirement for reconfiguration can also be used for business purposes, for example optimized use of software licenses, where an operator can install hardware at all relevant locations but deploy software licenses only for operation of a subset of this hardware based on actual demand and moved with users. This research area is closely related to Software Defined Networking which until recently has focused mostly on the data plane with technologies such as OpenFlow and Netconf/Yang.

Recent developments such as the Programming Protocol-independent Packet Processors language (P4) has enabled software control also of the data plane which opens for software defined processing in the actual packet flow. In SMIL, we plan to leverage these advances together from SDN controllers such as OpenDaylight to enable Self-driving networks for access and transport networks for 5G. In the laboratory, we will use the latest MX-series routers from Juniper Networks with P4 capabilites to explore self-driving networks for 5G.
Robust cellular networks
New user groups are encouraged to share a common infrastructure to save cost and leverage state of the art technologies. This trend increases the requirements of robustness of the underlying architecture since our society relies not only on critical consumer services like communication services, banking, shopping and logistics, but also applications traditionally served by dedicated networks such as military, emergency (e.g. TETRA) and railroad signalling networks (e.g. GSM-R) which all consider 5G as their network infrastructure in the future.
We believe Heterogeneous infrastructure has several benefits to ensure interoperability and open standards in 5G but this requirement also adds to the complexity of the network since different vendors may rely on different network structures, and different communication protocols even if they are defined by standard bodies such as 3GPP. When the goal of heterogenous infrastructure is added to requirements from new users, we can see that 5G represents very demanding requirements for the cellular operators and the network infrastructure vendors.

SimulaMet Centre for Resilient Networks and Applications have studied this topic over many years in fixed networks, in 4G cellular networks and for IoT applications. With the new laboratory, we will extend our studies to 5G New Radio and will also address how to provide robustness of the 5G core network by reducing the dependency for a centralized 5G infrastructure by virtualization.
Publications for SMIL: SimulaMet Interoperability Lab
Journal Article
Towards a Lightweight Task Scheduling Framework for Cloud and Edge Platform
Internet of Things; Engineering Cyber Physical Human Systems (2023).Status: Accepted
Towards a Lightweight Task Scheduling Framework for Cloud and Edge Platform
Mobile devices are becoming ubiquitous in our daily lives, but they have limited computational capacity. Thanks to the advancement in the network infrastructure, task offloading from resource-constrained devices to the near edge and the cloud becomes possible and advantageous. Complete task offloading is now possible to almost limitless computing resources of public cloud platforms. Generally, the edge computing resources support latency-sensitive applications with limited computing resources, while the cloud supports latency-tolerant applications. This paper proposes one lightweight task-scheduling framework from cloud service provider perspective, for applications using both cloud and edge platforms. Here, the challenge is using edge and cloud resources efficiently when necessary. Such decisions have to be made quickly, with a small management overhead. Our framework aims at solving two research questions. They are: i) How to distribute tasks to the edge resource pools and multi-clouds? ii) How to manage these resource pools effectively with low overheads? To answer these two questions, we examine the performance of our proposed framework based on Reliable Server Pooling (RSerPool). We have shown via simulations that RSerPool, with the correct usage and configuration of pool member selection policies, can accomplish the cloud/edge setup resource selection task with a small overhead.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, NorNet, SMIL: SimulaMet Interoperability Lab |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Internet of Things; Engineering Cyber Physical Human Systems |
Publisher | Elsevier |
Keywords | Cloud computing, Edge Computing, Reliable Server Pooling (RSerPool), Resource Pools, Task Scheduling |
Journal Article
Secure Embedded Living: Towards a Self-contained User Data Preserving Framework
IEEE Communications Magazine 60, no. 11 (2022): 74-80.Status: Published
Secure Embedded Living: Towards a Self-contained User Data Preserving Framework
Smart living represents the hardware-software co-inhabiting with humans for better living standards and improved well-being. Here, hardware monitors human activities (by collecting data) specific to a context. Such data can be processed to offer context-specific valuable insights. Such insights can be used for optimising the well-being, living experience and energy cost of smart homes. This paper proposes a Secure Embedded Living Framework (SELF) that enforces a privacy-preserving data control mechanism by integrating multiple technologies, such as Internet-of-thing, cloud/fog platform, machine learning and blockchain. The primary aim of the SELF is to allow the user to retain more control of its data.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, NorNet, SMIL: SimulaMet Interoperability Lab, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | IEEE Communications Magazine |
Volume | 60 |
Issue | 11 |
Pagination | 74–80 |
Date Published | 11/2022 |
Publisher | IEEE |
ISSN | 0163-6804 |
Keywords | blockchain, Cloud, Data, IoTs, Security, User |
DOI | 10.1109/MCOM.001.2200165 |
AI Anomaly Detection for Cloudified Mobile Core Architectures
Transactions on Network and Service Management (2022).Status: Published
AI Anomaly Detection for Cloudified Mobile Core Architectures
IT systems monitoring is a crucial process for managing and orchestrating network resources, allowing network providers to rapidly detect and react to most impediment causing network degradation. However, the high growth in size and complexity of current operational networks (2022) demands new solutions to process huge amounts of data (including alarms) reliably and swiftly. Further, as the network becomes progressively more virtualized, the hosting of nfv on cloud environments adds a magnitude of possible bottlenecks outside the control of the service owners. In this paper, we propose two deep learning anomaly detection solutions that leverage service exposure and apply it to automate the detection of service degradation and root cause discovery in a cloudified mobile network that is orchestrated by ETSI OSM. A testbed is built to validate these AI models. The testbed collects monitoring data from the OSM monitoring module, which is then exposed to the external AI anomaly detection modules, tuned to identify the anomalies and the network services causing them. The deep learning solutions are tested using various artificially induced bottlenecks. The AI solutions are shown to correctly detect anomalies and identify the network components involved in the bottlenecks, with certain limitations in a particular type of bottlenecks. A discussion of the right monitoring tools to identify concrete bottlenecks is provided.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, NorNet, SMIL: SimulaMet Interoperability Lab |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | Transactions on Network and Service Management |
Date Published | 08/2022 |
Publisher | IEEE |
Place Published | Los Alamitos, California/U.S.A. |
ISSN | 1932-4537 |
Keywords | 5G, AI, Anomaly detection, Autoencoders, deep learning, Mobile networks, Smart Networks |
DOI | 10.1109/TNSM.2022.3203246 |
Proceedings, refereed
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
In Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA). Sydney, New South Wales/Australia: Springer, 2022.Status: Published
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
Energy-efficient computing model is a popular choice for high performance as well as throughput oriented computing ecosystems. Mobile (computing) devices are becoming increasingly ubiquitous to our computing domain, but with limited resources (true both for computation as well as for energy). Hence, workload offloading from resource-constrained mobile devices to the Edge and maybe (later) to the cloud become necessary as well as useful. Thanks to the persistent technical breakthroughs in global wireless standards (or in mobile networks) together with the almost limitless amount of resources in public cloud platforms, workload offloading is possible and cheaper. In such scenarios, Mobile Edge Computing (MEC) resources could be provisioned in proximity to the users for supporting latency-sensitive applications. Here, two relevant problems could be: i) How to distribute workload to the resource pools of MEC as well as public (multi-)clouds? ii) How to manage such resource pools effectively? To answer these problems in this paper, we examine the performance of our proposed approach using the Reliable Server Pooling (RSerPool) framework in more detail. We also have outlined the resource pool management policies to effectively use RSerPool for workload offloading from mobile devices into the cloud/MEC ecosystem.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA) |
Publisher | Springer |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud computing, Load Distribution, Mobile Edge Computing (MEC), Multi-Cloud Computing, Reliable Server Pooling (RSerPool), Serverless Computing |
Talks, contributed
Detecting Issues with In-Band Telemetry in OSM-Orchestrated Core Networks
In ETSI, Virtual. Virtual: ETSI, 2022.Status: Published
Detecting Issues with In-Band Telemetry in OSM-Orchestrated Core Networks
Open Source MANO is a helpful tool to manage and orchestrate the instantiation of core network setups, like Network Service (NS) instances of our SimulaMet OpenAirInterface Virtual Network Function (VNF) for Enhanced Packet Cores (EPC). We furthermore extended our NS with VNF instances of Programming Protocol-independent Packet Processors (P4) switches, in order to allow for in-band telemetry. With in-band telemetry, it is possible to flexibly add, process, and remove telemetry information to traffic within the packet core, in order to allow for fine-granular evaluation of the system performance and the users' experienced quality of service. In our presentation and demo, we would like to provide an overview of our ongoing work on P4-based in-band telemetry in an OSM-orchestrated 4G core, which is used for detecting performance problems and anomalies in the network based on machine learning. We would furthermore like to demonstrate the details of our setup to the audience in a live demo.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, The Center for Resilient Networks and Applications, NorNet, 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Talks, contributed |
Year of Publication | 2022 |
Location of Talk | ETSI, Virtual |
Publisher | ETSI |
Place Published | Virtual |
Type of Talk | Demo presentation |
Keywords | Anomaly detection, Network Function Virtualisation (NFV), Open Source MANO (OSM), P4, Telemetry |
URL | http://osm-download.etsi.org/ftp/osm-11.0-eleven/OSM13_Ecosystem_Day/OSM... |
Talks, invited
Reliability and security in future telecommunication networks
In Inside Telecom conference, Scandic hotel, Fornebu, Norway. Inside Telecom conference: Simula Metropolitan Center for Digital Engineering, Centre for Resilient Networks and Applications (CRNA), 2022.Status: Published
Reliability and security in future telecommunication networks
The talk address Reliability and security in future telecommunication networks reporting work from SimulaMet SMIL laboratory and the GAIA-project, explaining dependencies and vulnerabilities of current telecommunication networks and applications and how to address these to form robust and reliable networks and services.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab |
Publication Type | Talks, invited |
Year of Publication | 2022 |
Location of Talk | Inside Telecom conference, Scandic hotel, Fornebu, Norway |
Publisher | Simula Metropolitan Center for Digital Engineering, Centre for Resilient Networks and Applications (CRNA) |
Place Published | Inside Telecom conference |
Type of Talk | Invited talk |
Keywords | 5G, Applications, Cloud services, geographical dependencies, network measurements, Resilience, Robustness |
Technical reports
Norske mobilnett i 2021 – Tilstandsrapport fra Centre for Resilient Networks and Applications
Oslo/Norway: Simula Metropolitan Center for Digital Engineering, Centre for Resilient Networks and Applications (CRNA), 2022.Status: Published
Norske mobilnett i 2021 – Tilstandsrapport fra Centre for Resilient Networks and Applications
Denne rapporten er utarbeidet av Center for Resilient Networks and Applications (CRNA), som er en del av Simula Metropolitan Center for Digital Engineering. CRNA driver grunn- leggende forskning innen robusthet og sikker- het i nettverk med mandat og finansiering fra Kommunal- og moderniseringsdepartementet. Senteret produserer en årlig rapport om tilstan- den i norske mobilnett. Årets rapport er den niende i rekken.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab |
Publication Type | Technical reports |
Year of Publication | 2022 |
Publisher | Simula Metropolitan Center for Digital Engineering, Centre for Resilient Networks and Applications (CRNA) |
Place Published | Oslo/Norway |
ISBN Number | 82-92593-36-5 |
URL | https://www.simula.no/sites/default/files/norske_mobilnett_i_2021.pdf |
Book
AI and ML – Enablers for Beyond 5G Networks
Online: 5G PPP Technology Board, 2021.Status: Published
AI and ML – Enablers for Beyond 5G Networks
This white paper on AI and ML as enablers of beyond 5G (B5G) networks is based on contributions from almost 20 5G PPP projects, coordinated through the 5G PPP Technology Board, that research, implement and validate 5G and B5G network systems. The paper introduces the main relevant mechanisms in Artificial Intelligence (AI) and Machine Learning (ML), currently investigated and exploited for enhancing 5G and B5G networks.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications |
Publication Type | Book |
Year of Publication | 2021 |
Date Published | 05/2021 |
Publisher | 5G PPP Technology Board |
Place Published | Online |
URL | https://5g-ppp.eu/wp-content/uploads/2021/05/AI-MLforNetworks-v1-0.pdf |
DOI | 10.5281/zenodo.429989 |
Journal Article
A Multi-Parameter Comprehensive Optimized Algorithm for MPTCP Networks
Electronics 10, no. 16 (2021).Status: Published
A Multi-Parameter Comprehensive Optimized Algorithm for MPTCP Networks
With the increasing deployment of the Multi-Path Transmission Control Protocol (MPTCP) in heterogeneous network setups, there is a need to understand how its performance is affected in practice both by traditional factors such as round-trip time measurements, buffer predictive modelling and by calculating the impact factors of network subflows. Studies have shown that path management and packet scheduling have a large effect on overall performance and required limited resources with different congestion control parameters. Unfortunately, most of the previous studies have focused almost exclusively on the improvement of a single parameter, without a holistic view. To deal with this issue effectively, this paper puts forward a Multi-Parameter Comprehensive Optimized Algorithm (MPCOA), which can find the smaller buffer size and select the appropriate congestion control and path management algorithm on the premise of ensuring larger throughput. Experiments of three scenarios show that MPCOA can save the buffer space and subflow resources, and achieve high throughput. Meanwhile, a set of quantitative improvement results given by MPCOA is convenient for us to evaluate the quality of MPTCP network, and provide reference for our ongoing future work, like for 4G/5G, Internet of Things and Star Link networks.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, GAIA |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | Electronics |
Volume | 10 |
Issue | 16 |
Date Published | 08/2021 |
Publisher | MDPI |
Place Published | Basel/Switzerland |
ISSN | 2079-9292 |
Keywords | Buffer Size, congestion control, MPCOA, Multi-Path TCP (MPTCP), Path Management |
URL | https://www.mdpi.com/2079-9292/10/16/1942/pdf |
DOI | 10.3390/electronics10161942 |
Proceedings, refereed
A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework
In Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN). Edmonton, Alberta, Canada: IEEE Computer Society, 2021.Status: Published
A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework
Mobile Edge Computing (MEC) places cloud resources nearby the user, to provide support for latency-sensitive applications. Offloading workload from resource-constrained mobile devices (such as smartphones) into the cloud ecosystem is becoming increasingly popular. In this demonstration, we show how to deploy a mobile network (with OpenAirInterface and Open Source MANO), as well as to adapt the Reliable Server Pooling (RSerPool) framework to efficiently manage MEC as well as multi-cloud resources to run an interactive demo application.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing, 5G-VINNI: 5G Verticals INNovation Infrastructure , The Center for Resilient Networks and Applications, NorNet |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 10/2021 |
Publisher | IEEE Computer Society |
Place Published | Edmonton, Alberta, Canada |
Keywords | Demonstration, Evolved Packet Core (EPC), Mobile Edge Computing (MEC), Multi-Cloud Computing, Network Function Virtualisation (NFV), Reliable Server Pooling (RSerPool) |
URL | https://www.ieeelcn.org/lcn46demos/Demo_4_1570754367.pdf |
The Center for Resilient Networks and Applications

The Center for Resilient Networks and Applications (CRNA) was established in 2014 as a response to modern society’s massive and increasing dependability on applications running on top of the Internet. CRNA focuses on the robustness and security of ICT infrastructures, by which we mean that applications should continue to function at the best possible level of quality and security, even in the presence of technical failures, unplanned excessive load, design and implementation flaws in specific components, human error and malicious intent.
The Center receives base funding from the Norwegian Ministry of Transport and Communications. The Ministry has given the Center specific responsibilities through a mandate that includes operating an infrastructure for monitoring the state of the Norwegian telecommunications infrastructure, in particular the mobile broadband networks, and publishing an annual report on that. There is a tight integration between CRNA and Simula@UiB. Whereas CRNA concentrates on safety aspects of digital infrastructures, Simula@UiB has deep expertise in security. CRNA has also established partnerships with mobile operators and relevant stakeholders.
During the past few years, CRNA has made a number of key scientific and societal contributions. These include contributions to education and science through the education of master and PhD students and the publication of numerous articles in high impact and respected venues. CRNA has also contributed to informing policy makers and network operators on issues related to digital vulnerability and network performance.
Mandate for CRNA
The Center will undertake long-term research and innovation at a high international level, on robustness and reliability of communications networks and applications. The Center will educate experts on the doctoral and magisterial levels in cooperation with universities and university colleges.
Furthermore, the Center will have responsibility for maintaining and running a research infrastructure for measuring the Norwegian telecommunications network. This research infrastructure will be made available for research groups at universities and university colleges. The Center wishes to provide measurement and monitoring services for regions, municipalities, industry and public enterprises in Norway. The Center will produce an annual report on the state of the Norwegian communications infrastructure to the Norwegian Post and Telecommunications Authority.
The Center's ambition is to be the nationally leading research institution within research on reliable ICT infrastructures, and collaborate with other research institutions that have expertise that will not be naturally covered by the Center. It will be expected that the Center collects additional funding from sources such as the Norwegian Research Council. EU research programmes, industry and relevant parts of the public administration.
The Center is part of Simula Metropolitan CDE organisational structure. CRNA will perform annual management and dialogue meetings with the Norwegian Ministry of Transport and Communication and the Norwegian Post and Telecommunications Authority. The work performed at the Center will be evaluated by the Research Council every five years. The criteria for evaluation will be related to scientific quality and relevance to society. The annual budgets for the Center are dependent on grants from the state budget and will be considered on the background of the evaluation results
Publications for The Center for Resilient Networks and Applications
Journal Article
Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping
Nature Communications 14 (2023).Status: Published
Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping
<p>Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient. We find that shortest paths in large real networks, such as the network of protein-protein interactions and the Internet at the autonomous system level, are not random but are organized according to latent-geometric rules. If nodes of these networks are mapped to points in latent hyperbolic spaces, shortest paths in them align along geodesic curves connecting endpoint nodes. We find that this alignment is sufficiently strong to allow for the identification of shortest path nodes even in the case of substantially incomplete networks, where numbers of missing links exceed those of observable links. We demonstrate the utility of latent-geometric path finding in problems of cellular pathway reconstruction and communication security.</p>
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Nature Communications |
Volume | 14 |
Number | 186 |
Publisher | Nature |
Towards a Lightweight Task Scheduling Framework for Cloud and Edge Platform
Internet of Things; Engineering Cyber Physical Human Systems (2023).Status: Accepted
Towards a Lightweight Task Scheduling Framework for Cloud and Edge Platform
Mobile devices are becoming ubiquitous in our daily lives, but they have limited computational capacity. Thanks to the advancement in the network infrastructure, task offloading from resource-constrained devices to the near edge and the cloud becomes possible and advantageous. Complete task offloading is now possible to almost limitless computing resources of public cloud platforms. Generally, the edge computing resources support latency-sensitive applications with limited computing resources, while the cloud supports latency-tolerant applications. This paper proposes one lightweight task-scheduling framework from cloud service provider perspective, for applications using both cloud and edge platforms. Here, the challenge is using edge and cloud resources efficiently when necessary. Such decisions have to be made quickly, with a small management overhead. Our framework aims at solving two research questions. They are: i) How to distribute tasks to the edge resource pools and multi-clouds? ii) How to manage these resource pools effectively with low overheads? To answer these two questions, we examine the performance of our proposed framework based on Reliable Server Pooling (RSerPool). We have shown via simulations that RSerPool, with the correct usage and configuration of pool member selection policies, can accomplish the cloud/edge setup resource selection task with a small overhead.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, NorNet, SMIL: SimulaMet Interoperability Lab |
Publication Type | Journal Article |
Year of Publication | 2023 |
Journal | Internet of Things; Engineering Cyber Physical Human Systems |
Publisher | Elsevier |
Keywords | Cloud computing, Edge Computing, Reliable Server Pooling (RSerPool), Resource Pools, Task Scheduling |
Proceedings, refereed
On the realization of Cloud-RAN on Mobile Edge Computing
In International Conference on Advanced Information Networking and Applications (AINA-2023). 655th ed. Vol. 3. Lecture Notes in Networks and Systems: Springer, 2023.Status: Published
On the realization of Cloud-RAN on Mobile Edge Computing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | International Conference on Advanced Information Networking and Applications (AINA-2023) |
Volume | 3 |
Edition | 655 |
Date Published | 03/2023 |
Publisher | Springer |
Place Published | Lecture Notes in Networks and Systems |
ISBN Number | 978-3-031-28693-3 |
PRINCIPIA: Opportunistic CPU and CPU-shares Allocation for Containerized Virtualization in Mobile Edge Computing
In IEEE/IFIP Network Operations and Management Symposium. IEEE, 2023.Status: Accepted
PRINCIPIA: Opportunistic CPU and CPU-shares Allocation for Containerized Virtualization in Mobile Edge Computing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE/IFIP Network Operations and Management Symposium |
Publisher | IEEE |
Book Chapter
5G-sikkerhet: Norge mellom stormaktene
In Digitalisering og internasjonal politikk. Universitetsforlaget, 2022.Status: Published
5G-sikkerhet: Norge mellom stormaktene
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, GAIA |
Publication Type | Book Chapter |
Year of Publication | 2022 |
Book Title | Digitalisering og internasjonal politikk |
Chapter | 7 |
Date Published | 01/2022 |
Publisher | Universitetsforlaget |
ISBN Number | 9788215052557 |
Edited books
Smittestopp − A Case Study on Digital Contact Tracing
In Simula SpringerBriefs on Computing. Vol. 11. Cham: Springer Nature, 2022.Status: Published
Smittestopp − A Case Study on Digital Contact Tracing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Edited books |
Year of Publication | 2022 |
Secondary Title | Simula SpringerBriefs on Computing |
Volume | 11 |
Number of pages in book | 141 |
Date Published | 06/2022 |
Publisher | Springer Nature |
Place Published | Cham |
ISBN Number | 978-3-031-05466-2 |
URL | https://link.springer.com/book/10.1007/978-3-031-05466-2#bibliographic-i... |
DOI | 10.1007/978-3-031-05466-2 |
Journal Article
Measuring and localising congestion in mobile broadband networks
IEEE Transactions on Network and Service Management 19, no. 1 (2022): 366-380.Status: Published
Measuring and localising congestion in mobile broadband networks
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | IEEE Transactions on Network and Service Management |
Volume | 19 |
Issue | 1 |
Pagination | 366 - 380 |
Date Published | 03/2022 |
Publisher | IEEE |
ISSN | 1932-4537 |
DOI | 10.1109/TNSM.2021.3115722 |
OpenIaC: open infrastructure as code - the network is my computer
Journal of Cloud Computing 11 (2022).Status: Published
OpenIaC: open infrastructure as code - the network is my computer
Modern information systems are built fron a complex composition of networks, infrastructure, devices, services, and applications, interconnected by data flows that are often private and financially sensitive. The 5G networks, which can create hyperlocalized services, have highlighted many of the deficiencies of current practices in use today to create and operate information systems. Emerging cloud computing techniques, such as Infrastructure-as-Code (IaC) and elastic computing, offer a path for a future re-imagining of how we create, deploy, secure, operate, and retire information systems. In this paper, we articulate the position that a comprehensive new approach is needed for all OSI layers from layer 2 up to applications that are built on underlying principles that include reproducibility, continuous integration/continuous delivery, auditability, and versioning. There are obvious needs to redesign and optimize the protocols from the network layer to the application layer. Our vision seeks to augment existing Cloud Computing and Networking solutions with support for multiple cloud infrastructures and seamless integration of cloud-based microservices. To address these issues, we propose an approach named Open Infrastructure as Code (OpenIaC), which is an attempt to provide a common open forum to integrate and build on advances in cloud computing and blockchain to address the needs of modern information architectures. The main mission of our OpenIaC approach is to provide services based on the principles of Zero Trust Architecture (ZTA) among the federation of connected resources based on Decentralized Identity (DID). Our objectives include the creation of an open-source hub with fine-grained access control for an open and connected infrastructure of shared resources (sensing, storage, computing, 3D printing, etc.) managed by blockchains and federations. Our proposed approach has the potential to provide a path for developing new platforms, business models, and a modernized information ecosystem necessary for 5G networks.
Afilliation | Communication Systems |
Project(s) | GAIA, The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | Journal of Cloud Computing |
Volume | 11 |
Number | 12 |
Date Published | 05/2022 |
Publisher | Springer |
Place Published | Journal of Cloud Computing |
Keywords | 5G networks, Cloud, edge, infrastructure-as-Code, OPenIaC |
Sectors, Beams and Environmental Impact on the Performance of Commercial 5G mmWave Cells: An Empirical Study
IEEE Access 10 (2022): 133309-133323.Status: Published
Sectors, Beams and Environmental Impact on the Performance of Commercial 5G mmWave Cells: An Empirical Study
millimeter wave (mmWave) communication is one of the cornerstones of future generations of mobile networks. While the performance of mmWave links has been thoroughly investigated by simulations and testbeds, the behavior of this technology in real-world commercial setups has not yet been thoroughly documented. In this paper, we address this gap and present the results of an empirical study to determine the actual performance of a commercial 5G mmWave cell through on-field measurements. We evaluate the signal and beam coverage map of an operational network as well as the end-to-end communication performance of a 5G mmWave connection, considering various scenarios, including human body blockage effects, foliage-caused and rain-induced attenuation, and water surface effects. To the best of our knowledge, this paper is the first to report on a commercial deployment while not treating the radio as a black box. Measurement results are compared with 3GPP’s statistical channel models for mmWave to check the possible gaps between simulated and actual performance. This measurement analysis provides valuable information for researchers and 5G verticals to fully understand how a 5G mmWave commercial access network operates in the real-world.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | IEEE Access |
Volume | 10 |
Pagination | 133309-133323 |
Date Published | 12/2022 |
Publisher | IEEE |
ISSN | 2169-3536 |
Keywords | 5G, commercial 5G networks, coverage analysis, millimeter-wave, mmWave |
URL | https://ieeexplore.ieee.org/document/9987496 |
DOI | 10.1109/ACCESS.2022.3229588 |
Secure Embedded Living: Towards a Self-contained User Data Preserving Framework
IEEE Communications Magazine 60, no. 11 (2022): 74-80.Status: Published
Secure Embedded Living: Towards a Self-contained User Data Preserving Framework
Smart living represents the hardware-software co-inhabiting with humans for better living standards and improved well-being. Here, hardware monitors human activities (by collecting data) specific to a context. Such data can be processed to offer context-specific valuable insights. Such insights can be used for optimising the well-being, living experience and energy cost of smart homes. This paper proposes a Secure Embedded Living Framework (SELF) that enforces a privacy-preserving data control mechanism by integrating multiple technologies, such as Internet-of-thing, cloud/fog platform, machine learning and blockchain. The primary aim of the SELF is to allow the user to retain more control of its data.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, NorNet, SMIL: SimulaMet Interoperability Lab, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | IEEE Communications Magazine |
Volume | 60 |
Issue | 11 |
Pagination | 74–80 |
Date Published | 11/2022 |
Publisher | IEEE |
ISSN | 0163-6804 |
Keywords | blockchain, Cloud, Data, IoTs, Security, User |
DOI | 10.1109/MCOM.001.2200165 |
Publications
Proceedings, refereed
On the realization of Cloud-RAN on Mobile Edge Computing
In International Conference on Advanced Information Networking and Applications (AINA-2023). 655th ed. Vol. 3. Lecture Notes in Networks and Systems: Springer, 2023.Status: Published
On the realization of Cloud-RAN on Mobile Edge Computing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | International Conference on Advanced Information Networking and Applications (AINA-2023) |
Volume | 3 |
Edition | 655 |
Date Published | 03/2023 |
Publisher | Springer |
Place Published | Lecture Notes in Networks and Systems |
ISBN Number | 978-3-031-28693-3 |
PRINCIPIA: Opportunistic CPU and CPU-shares Allocation for Containerized Virtualization in Mobile Edge Computing
In IEEE/IFIP Network Operations and Management Symposium. IEEE, 2023.Status: Accepted
PRINCIPIA: Opportunistic CPU and CPU-shares Allocation for Containerized Virtualization in Mobile Edge Computing
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2023 |
Conference Name | IEEE/IFIP Network Operations and Management Symposium |
Publisher | IEEE |
Proceedings, refereed
Crosslayer Network Outage Classification Using Machine Learning
In Applied Networking Research Workshop (ANRW). ACM, 2022.Status: Published
Crosslayer Network Outage Classification Using Machine Learning
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, GAIA |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Applied Networking Research Workshop (ANRW) |
Pagination | 1-7 |
Publisher | ACM |
Public outreach
Hvor ble det av cyberkrigen?
Aftenposten, 2022.Status: Published
Hvor ble det av cyberkrigen?
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, GAIA |
Publication Type | Public outreach |
Year of Publication | 2022 |
Publisher | Aftenposten |
Hvorfor venter vi «skandale» hver gang it-sikkerheten sjekkes i staten?
Dagens Næringsliv, 2022.Status: Published
Hvorfor venter vi «skandale» hver gang it-sikkerheten sjekkes i staten?
Det eneste som kan gi bedre datasikkerhet i staten raskt, er at politikerne tar beslutninger som går på tvers av sektorene. Mer ansvar og myndighet til NSM og Justisdepartementet er en mulig løsning.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Public outreach |
Year of Publication | 2022 |
Date Published | 11/2022 |
Publisher | Dagens Næringsliv |
Type of Work | Popular science |
Keywords | Security |
URL | https://www.dn.no/innlegg/datasikkerhet/it-sikkerhet/cyberangrep/hvorfor... |
What happened to the cyberwar
In Hvor ble det av cyberkrigen? https://www.aftenposten.no/meninger/debatt/i/nWKolo/hvor-ble-det-av-cyberkrigen: Aftenposten, 2022.Status: Published
What happened to the cyberwar
Professor Olav Lysne, Director of SimulaMet and Haakon Bryhni, head of CRNA at SimulaMet recently published an op-ed in Aftenposten discussing cyber warfare in Ukraine.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA |
Publication Type | Public outreach |
Year of Publication | 2022 |
Secondary Title | Hvor ble det av cyberkrigen? |
Date Published | 03/2022 |
Publisher | Aftenposten |
Place Published | https://www.aftenposten.no/meninger/debatt/i/nWKolo/hvor-ble-det-av-cyberkrigen |
Type of Work | Popular science article |
Keywords | Applications, cyberwar, Internet, reliable, Security |
URL | https://www.simulamet.no/content/what-happened-cyberwar |
Journal Article
OpenIaC: open infrastructure as code - the network is my computer
Journal of Cloud Computing 11 (2022).Status: Published
OpenIaC: open infrastructure as code - the network is my computer
Modern information systems are built fron a complex composition of networks, infrastructure, devices, services, and applications, interconnected by data flows that are often private and financially sensitive. The 5G networks, which can create hyperlocalized services, have highlighted many of the deficiencies of current practices in use today to create and operate information systems. Emerging cloud computing techniques, such as Infrastructure-as-Code (IaC) and elastic computing, offer a path for a future re-imagining of how we create, deploy, secure, operate, and retire information systems. In this paper, we articulate the position that a comprehensive new approach is needed for all OSI layers from layer 2 up to applications that are built on underlying principles that include reproducibility, continuous integration/continuous delivery, auditability, and versioning. There are obvious needs to redesign and optimize the protocols from the network layer to the application layer. Our vision seeks to augment existing Cloud Computing and Networking solutions with support for multiple cloud infrastructures and seamless integration of cloud-based microservices. To address these issues, we propose an approach named Open Infrastructure as Code (OpenIaC), which is an attempt to provide a common open forum to integrate and build on advances in cloud computing and blockchain to address the needs of modern information architectures. The main mission of our OpenIaC approach is to provide services based on the principles of Zero Trust Architecture (ZTA) among the federation of connected resources based on Decentralized Identity (DID). Our objectives include the creation of an open-source hub with fine-grained access control for an open and connected infrastructure of shared resources (sensing, storage, computing, 3D printing, etc.) managed by blockchains and federations. Our proposed approach has the potential to provide a path for developing new platforms, business models, and a modernized information ecosystem necessary for 5G networks.
Afilliation | Communication Systems |
Project(s) | GAIA, The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2022 |
Journal | Journal of Cloud Computing |
Volume | 11 |
Number | 12 |
Date Published | 05/2022 |
Publisher | Springer |
Place Published | Journal of Cloud Computing |
Keywords | 5G networks, Cloud, edge, infrastructure-as-Code, OPenIaC |
Talks, invited
Reliability and security in future telecommunication networks
In Inside Telecom conference, Scandic hotel, Fornebu, Norway. Inside Telecom conference: Simula Metropolitan Center for Digital Engineering, Centre for Resilient Networks and Applications (CRNA), 2022.Status: Published
Reliability and security in future telecommunication networks
The talk address Reliability and security in future telecommunication networks reporting work from SimulaMet SMIL laboratory and the GAIA-project, explaining dependencies and vulnerabilities of current telecommunication networks and applications and how to address these to form robust and reliable networks and services.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab |
Publication Type | Talks, invited |
Year of Publication | 2022 |
Location of Talk | Inside Telecom conference, Scandic hotel, Fornebu, Norway |
Publisher | Simula Metropolitan Center for Digital Engineering, Centre for Resilient Networks and Applications (CRNA) |
Place Published | Inside Telecom conference |
Type of Talk | Invited talk |
Keywords | 5G, Applications, Cloud services, geographical dependencies, network measurements, Resilience, Robustness |
Talk, keynote
Research-based Innovation
In Grundergarasjen at SimulaMet, Oslo, Norway. Grundergarasjen: Grundergarasjen, 2022.Status: Published
Research-based Innovation
Grundergarasjen Bootcamp presentation
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering |
Publication Type | Talk, keynote |
Year of Publication | 2022 |
Location of Talk | Grundergarasjen at SimulaMet, Oslo, Norway |
Date Published | 01/2022 |
Publisher | Grundergarasjen |
Place Published | Grundergarasjen |
Type of Talk | Keynote |
Keywords | Research based innovation |
Robust ICT infrastructure during Hybrid Warfare
In Teknologirådet, Stortinget, Oslo, Norway. Teknologirådet, Stortinget: Simula Metropolitan Centre for Digital Engineering, 2022.Status: Published
Robust ICT infrastructure during Hybrid Warfare
The talk "Robust ICT infrastructure during Hybrid Warfare" discussed how to achieve more robust network connectivity in the light of hybrid warfare.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Talk, keynote |
Year of Publication | 2022 |
Location of Talk | Teknologirådet, Stortinget, Oslo, Norway |
Date Published | 11/2022 |
Publisher | Simula Metropolitan Centre for Digital Engineering |
Place Published | Teknologirådet, Stortinget |
Type of Talk | Keynote |
Keywords | 5G, Cloud services, Robustness, Seacables |
Public outreach
5G-race is on. Sweden and Germany shows the way.
In 5G-racet starter nå. Sverige og Tyskland viser vei. aftenposten.no: Aftenposten, 2021.Status: Published
5G-race is on. Sweden and Germany shows the way.
Vi trenger mulighet for rask og ubyråkratisk etablering av lokale nett for å skape bredde og kraft i norsk 5G-innovasjon.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering |
Publication Type | Public outreach |
Year of Publication | 2021 |
Secondary Title | 5G-racet starter nå. Sverige og Tyskland viser vei. |
Date Published | 03/2021 |
Publisher | Aftenposten |
Place Published | aftenposten.no |
Type of Work | Popular science |
Keywords | 5G, frequency, innovation, regulatory |
URL | https://www.aftenposten.no/meninger/debatt/i/yRmWXg/5g-racet-starter-naa... |
Poster
A decade of evolution in telecommunications infrastructure
In Poster: A decade of evolution in telecommunications infrastructure. IMC 21: IMC , 2021.Status: Published
A decade of evolution in telecommunications infrastructure
Characterizing countries’ standing in terms of the maturity of their telecommunications infrastructure is paramount to inform policy and investments. Here, we use a broad set of features to group countries according to the state of their infrastructures and track how this has changed between 2010 and 2020. While a few nations continue to dominate, the membership of this club has changed with several European countries leaving
Afilliation | Communication Systems |
Project(s) | GAIA, The Center for Resilient Networks and Applications |
Publication Type | Poster |
Year of Publication | 2021 |
Secondary Title | Poster: A decade of evolution in telecommunications infrastructure |
Date Published | 10/2021 |
Publisher | IMC |
Place Published | IMC 21 |
Type of Work | Internet measurements |
Journal Article
A Multi-Perspective Study of Internet Performance during the COVID-19 Outbreak
Arxiv (2021).Status: Published
A Multi-Perspective Study of Internet Performance during the COVID-19 Outbreak
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | Arxiv |
Publisher | Arxiv |
Place Published | Arrxiv.org |
Keywords | COVID, Internet, network |
DOI | 10.48550/arXiv.2101.05030 |
Public outreach
5G - a big computer!
Digi.no: Teknisk Ukeblad Media AS, 2020.Status: Published
5G - a big computer!
Article about the SimulaMet SMIL lab
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Public outreach |
Year of Publication | 2020 |
Date Published | 02/2020 |
Publisher | Teknisk Ukeblad Media AS |
Place Published | Digi.no |
Type of Work | Popular science article |
Keywords | 5G, GAIA, SMIL |
URL | https://www.digi.no/artikler/5g-en-stor-datamaskin/485861 |
Teknisk sett - Episode 258 – 5G er en stor datamaskin (Podcast)
pcast.no: Teknisk ukeblad, 2020.Status: Published
Teknisk sett - Episode 258 – 5G er en stor datamaskin (Podcast)
Podcast om 5G-nettet
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering |
Publication Type | Public outreach |
Year of Publication | 2020 |
Publisher | Teknisk ukeblad |
Place Published | pcast.no |
Type of Work | Popular science |
Keywords | 5G mobile communication |
URL | https://www.pcast.no/podcast/episode-258-5g-er-en-stor-datamaskin/ |
Teknologihandel mellom Norge og Kina? (Podcast)
polyteknisk.no: Polyteknisk forening, 2020.Status: Published
Teknologihandel mellom Norge og Kina? (Podcast)
The podcast discuss technology trade questions related to communication networks and microprocessor trade.
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Public outreach |
Year of Publication | 2020 |
Publisher | Polyteknisk forening |
Place Published | polyteknisk.no |
Type of Work | Popular science |
Keywords | 5G mobile communication, Microprocessors |
URL | https://www.polyteknisk.no/lytt-til-polypod-teknologihandel-mellom-norge... |
Talk, keynote
Emerging technology divide in areas like 5G infrastructure and microprocessors
In NHO. NHO conference: NHO, 2020.Status: Published
Emerging technology divide in areas like 5G infrastructure and microprocessors
Emerging technology divide in areas like 5G infrastructures and microprocessors
Afilliation | Communication Systems |
Project(s) | Simula Metropolitan Center for Digital Engineering, GAIA, The Center for Resilient Networks and Applications |
Publication Type | Talk, keynote |
Year of Publication | 2020 |
Location of Talk | NHO |
Date Published | 11/2022 |
Publisher | NHO |
Place Published | NHO conference |
Type of Talk | Keynote |
Proceedings, refereed
Evaluating the Cloud-RAN architecture: functional splitting and switched Ethernet Xhaul
In 16th International Conference on Network and Service Management, CNSM 2020. Izmir Turkey and Virtual Conference: IEEE/IFIP, 2020.Status: Published
Evaluating the Cloud-RAN architecture: functional splitting and switched Ethernet Xhaul
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | 16th International Conference on Network and Service Management, CNSM 2020 |
Date Published | 11/2020 |
Publisher | IEEE/IFIP |
Place Published | Izmir Turkey and Virtual Conference |
URL | http://dl.ifip.org/db/conf/cnsm/cnsm2020/1570663439.pdf |
Reprint Edition | http://dl.ifip.org/db/conf/cnsm/cnsm2020/1570663439.pdf |
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
In Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN). Sydney, New South Wales/Australia: IEEE Computer Society, 2020.Status: Published
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
The Cloud-based Radio Access Network (Cloud-RAN) architecture and Network Function Virtualization (NFV) are key enablers to building future mobile networks in a flexible and cost-efficient way. With early deployments of the fifth generation of mobile technologies - 5G - around the world, setting up 4G/5G experimental infrastructures is necessary to optimally design 5G networks. In this demo, we present a custom small-scale 4G/5G testbed based on OpenAirInterface and Open Source MANO. The testbed integrates a Cloud-RAN based on switched Ethernet Xhaul and functional splitting, with an Evolved Packet Core (EPC) deployed as a Virtual Network Function (VNF) in a cloud infrastructure. Using Open Source MANO, this demo shows the administration and monitoring of the EPC VNF components. Moreover, as proof of concept, collection and visualization of telemetry will be shown for two smart-phones connected to the network through the Cloud-RAN.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 11/2020 |
Publisher | IEEE Computer Society |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud Radio Access Network (Cloud-RAN), Ethernet Xhaul, Fronthaul, Functional Splits, Network Function Virtualisation (NFV), Open Source MANO (OSM) |
On the Accuracy of Country-Level IP Geolocation
In Applied Networking Research Workshop (ANRW). Madrid/Spain: ACM, 2020.Status: Published
On the Accuracy of Country-Level IP Geolocation
The proliferation of online services comprised of globally spread microservices has security and performance implications. Understanding the underlying physical paths connecting end points has become important. This paper investigates the accuracy of commonly used IP geolocation approaches in geolocating end-to-end IP paths. To this end, we perform a controlled measurement study to collect IP level paths. We find that existing databases tend to geolocate IPs that belong to networks with global presence and those move between networks erroneously. A small percentage of IP geolocation disagreement between databases results in a significant disagreement when geolocating end-to-end paths. Geolocating one week of RIPE traceroute data validates our observations.
Afilliation | Communication Systems |
Project(s) | GAIA, NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Applied Networking Research Workshop (ANRW) |
Date Published | 07/2020 |
Publisher | ACM |
Place Published | Madrid/Spain |
ISBN Number | 978-1-4503-8039-3 |
Keywords | Geolocation Approaches, Geolocation Databases, IP Geolocation |
DOI | 10.1145/3404868.3406664 |
Proceedings, refereed
Unicast Extensions to IP Multicast
In Proceedings of the Protocols for Multimedia Systems PROMS'2000. Krakow, Poland, 2000.Status: Published
Unicast Extensions to IP Multicast
Publication Type | Proceedings, refereed |
Year of Publication | 2000 |
Conference Name | Proceedings of the Protocols for Multimedia Systems PROMS'2000 |
Pagination | 60-69 |
Place Published | Krakow, Poland |
Notes | ISBN 83-88309-05-6 |
Proceedings, refereed
Wireless Experimental Metropolitan Area Network Using IPv6 in Norway (WEMAN)
In Proceedings of the Thirty-Second Annual Hawaii International Conference on System Sciences. Maui, Hawaii,, 1999.Status: Published
Wireless Experimental Metropolitan Area Network Using IPv6 in Norway (WEMAN)
Publication Type | Proceedings, refereed |
Year of Publication | 1999 |
Conference Name | Proceedings of the Thirty-Second Annual Hawaii International Conference on System Sciences |
Place Published | Maui, Hawaii, |
Talks, contributed
Preliminary Simulation Results of an SCI Based Clustered Database Machine
In International Workshop on Computer Architecture, 1995.Status: Published
Preliminary Simulation Results of an SCI Based Clustered Database Machine
Publication Type | Talks, contributed |
Year of Publication | 1995 |
Location of Talk | International Workshop on Computer Architecture |