The Center for Resilient Networks and Applications

CRNA focuses on the robustness and security of ICT infrastructures, by which we mean that applications should continue to function at the best possible level of quality and security, even in the presence of technical failures, unplanned excessive load, design and implementation flaws in specific components, human error and malicious intent. The center was established as a response to modern society’s massive and increasing dependability on applications running on top of the Internet.
The Center receives base funding from the Norwegian Ministry of Transport and Communications. The Ministry has given the Center specific responsibilities through a mandate that includes operating an infrastructure for monitoring the state of the Norwegian telecommunications infrastructure, in particular the mobile broadband networks, and publishing an annual report on that. There is a tight integration between CRNA and Simula UiB. Whereas CRNA concentrates on safety aspects of digital infrastructures, Simula UiB has deep expertise in security. CRNA has also established partnerships with mobile operators and relevant stakeholders.
During the past few years, CRNA has made a number of key scientific and societal contributions. These include contributions to education and science through the education of master and PhD students and the publication of numerous articles in high impact and respected venues. CRNA has also contributed to informing policy makers and network operators on issues related to digital vulnerability and network performance.
You can find CRNA's LinkedIn page here.
Mandate for CRNA
The Center will undertake long-term research and innovation at a high international level, on robustness and reliability of communications networks and applications. The Center will educate experts on the doctoral and magisterial levels in cooperation with universities and university colleges.
Furthermore, the Center will have responsibility for maintaining and running a research infrastructure for measuring the Norwegian telecommunications network. This research infrastructure will be made available for research groups at universities and university colleges. The Center wishes to provide measurement and monitoring services for regions, municipalities, industry and public enterprises in Norway. The Center will produce an annual report on the state of the Norwegian communications infrastructure to the Norwegian Post and Telecommunications Authority.
The Center's ambition is to be the nationally leading research institution within research on reliable ICT infrastructures, and collaborate with other research institutions that have expertise that will not be naturally covered by the Center. It will be expected that the Center collects additional funding from sources such as the Norwegian Research Council. EU research programmes, industry and relevant parts of the public administration.
The Center is part of Simula Metropolitan CDE organisational structure. CRNA will perform annual management and dialogue meetings with the Norwegian Ministry of Transport and Communication and the Norwegian Post and Telecommunications Authority. The work performed at the Center will be evaluated by the Research Council every five years. The criteria for evaluation will be related to scientific quality and relevance to society. The annual budgets for the Center are dependent on grants from the state budget and will be considered on the background of the evaluation results
People at The Center for Resilient Networks and Applications
Who we are?
Simula Metropolitan employees are researchers, postdoctoral fellows, PhD students, engineers and administrative people. We are from all over the world, ranging from newly educated to experienced researchers, all working on making research in digital engineering at the highest international level possible.
Projects at The Center for Resilient Networks and Applications
Raksha: 5G Security for Critical Communications
The 5G networks can act as a vehicle to drive the digitalization phase for realizing a gigabit networked society. They use Service-Based Architecture to enable different use-case scenarios for example future critical communications services, such as Next Generation Nodnett (NGN) in Norway will be moving towards 5G networks. The complex 5G networks are vulnerable to cyber-attacks due to the increasing level of network softwarization approach, a requirement to support less secure legacy networks, and the adoption of web-centric protocols for the core network signaling. In addition, the security requirements of NGN are different than of 5G networks, hence it is crucial to understand their threat landscape from the attacker's perspective.
There is also a need for threat modeling methods and tools to effectively identify and address emerging risks in multi-generational 5G networks. Existing threat modeling approaches have limited scope to accommodate new security paradigms and varying degrees of trust assumptions of 5G networks. Moreover, it is almost impossible to validate threat modeling approaches by performing cyber security exercises and assess vulnerabilities on operational 5G as this could lead to unacceptable risk. Therefore, one of the best approaches to address the above issues is to combine threat modeling science together with a cyber range concept to enhance the cyber-resiliency of 5G-enabled critical communications and eventually other use-cases as well.
The project delivers a 5G cyber range platform empowered with tools for risk and threat assessment, cyber-attack simulation, evaluation and demonstration of defensive solutions for NGN. The project includes a Norwegian mobile operator, authorities responsible for cellular networks and security, research institutes, and universities. The proposed approach could be a future best practice for the Norwegian telecom industry to address cyber security challenges.
Coordinator:
Partners:
SMIL: SimulaMet Interoperability Lab

Research objectives
The SimulaMet Interoperability lab (SMIL) support a wide range of research activities at SimulaMet, and will in particular address the following research areas:
- Benchmark and improve time-sensitive networking technologies for 5G networks between base stations and edge computing for 5G.
- Study and improve mechanisms for network slicing to ensure successful co-use of 5G networks for critical applications.
- Study how legacy computers can be used to realize Cloud Radio Access Networks by using software defined radio and lower cost of deployment by moving functionality from hardware to software. Of particular interest is real-time scheduling of Cloud RAN workloads in edge data centres.
- Study new 5G and IoT applications enabled by edge computing using features such as low latency, high throughput and quality of service guarantees combined with edge computing capabilities available in 5G cellular networks.
- Develop and improve self-driving networks for fast recovery with technologies such as SDN, P4 and Network Function Virtualization in combination with machine learning of large-scale data analytics of the entire networked system.
- Understand and improve mechanisms required to establish Robust cellular networks for reliable infrastructure for new user groups which relies on dependable networks.
Time sensitive networking
Traditionally, dedicated point-to-point connections using Common Public Radio Interface (CPRI) have been used to interconnect smart cellular antennas to base stations. In 5G, the main infrastructure vendors have proposed e-CPRI, based on the Ethernet standard. With Ethernet, one would expect to leverage traditional switches for aggregation and simultaneous data transport in addition to e-CPRI, but Ethernet and legacy switches are not built for the timing requirements of 5G. To overcome this problem, different technologies have been suggested to enable Time Sensitive Networking (TSN) with Ethernet as the transport technology. In this research activity, we study how TSN can be realized in 5G front haul networks, combining the requirements of synchronization, bound latency in combination with traditional best-effort packet transport. In the laboratory we collaborate with TransPacket for access to FPGA-based implementations of TSN using the Fusion network technology implemented in Xilinx FPGAs enabling 100 Gbit/s Ethernet transport aggregating 5G base stations using 10Gbit/s ethernet with guaranteed transport service.

Network slicing
In 5G networks, the concept of Network slicing enables different classes of applications to share the same physical network. 5G is expected to be able to handle applications like emergency networks, real-time industry applications in combination with supporting demanding multimedia applications for consumers. These requirements require ability to express and enforce Quality of Service requirements ranging from frequency resource allocation, 5G base station resource allocation, network quality of service and allocation of processing resources in edge computers.
Initial work has focused on SDN-based implementations using the opensource Open Air interface, and future work will extend this to network slicing in 5G-NR and 5G front-haul and back-haul network guarantees for network slicing.
Cloud Radio Access Networks (Cloud RAN)
Cloud RAN enable the use of general purpose computers placed in edge data centres for realizing virtualized radio functions by using software defined radio techniques to lower cost of deployment by moving functionality from hardware to software. Of a particular interest to our research group is real-time scheduling of Cloud RAN workloads, how to partition between real-time and non-real-time workloads in the Cloud RAN, and how to handle the strict requirements to enable services like Ultra Reliable Low Latency Communication (URLLC) which can enable new applications previously not possible in cellular networks. Vendors are already introducing Cloud RAN solutions, such as the Nokia AirScale CloudRAN , the 4G/5G C-RAN architecture from Ericsson and 5G oriented C-RAN solutions from Huawei. It is of a particular interest to study if such network architectures can be realized in a multi-vendor environment. At what level should interoperability be ensured? Can Virtual Network Functions from different vendors run in the same edge computer environment?
New 5G and IoT applications enabled by edge computing
With edge computing deployed in the distributed 5G networks, new 5G and IoT applications can be made possible since response times can be guaranteed, and computing resources can be made available close to the application. An example is the real-time application of collision avoidance for cars sharing their sensor data with a local edge data center which can execute collision avoidance algorithms within specified time deadlines to provide drivers or self-driving vehicles with time-critical information to avoid collision. Other applications like games using augmented reality and real-time collaboration in industrial applications can be enabled by low latency and high throughput communication service with processing in edge data centres. Finally, IoT sensors with very low power consumption can leverage high sensitivity 5G NR capabilities to provide very long battery life for embedded applications. In SMIL, we will collaborate with other research groups and the 5G industry to investigate applications previously not possible in cellular networks and suggest improvements to applications and networks.
Self-driving Networks
The complexity of configuration and adjustment of telecommunication networks to respond to rapid changes in demand has led to the vision of Self-driving networks which measure, analyze and control themselves in an automated manner. Self-driving networks can react to changes in the environment (e.g., demand), while exploiting existing flexibilities to optimize themselves. Furthermore, the advent of large-scale machine learning can also benefit self-driving networks and over time develop to faster reconfiguration and more reliable operation compared to manual configuration by human operators, see for example the paper Why (and How) Networks Should Run Themselves for an in-depth discussion.
This method is of particular interest in 5G to ensure rapid reconfiguration in case of failure which requires automated response to demand, changes in geographic load in the network, change in network capacity and loss of connectivity with minimal impact for critical applications. The requirement for reconfiguration can also be used for business purposes, for example optimized use of software licenses, where an operator can install hardware at all relevant locations but deploy software licenses only for operation of a subset of this hardware based on actual demand and moved with users. This research area is closely related to Software Defined Networking which until recently has focused mostly on the data plane with technologies such as OpenFlow and Netconf/Yang.

Recent developments such as the Programming Protocol-independent Packet Processors language (P4) has enabled software control also of the data plane which opens for software defined processing in the actual packet flow. In SMIL, we plan to leverage these advances together from SDN controllers such as OpenDaylight to enable Self-driving networks for access and transport networks for 5G. In the laboratory, we will use the latest MX-series routers from Juniper Networks with P4 capabilites to explore self-driving networks for 5G.
Robust cellular networks
New user groups are encouraged to share a common infrastructure to save cost and leverage state of the art technologies. This trend increases the requirements of robustness of the underlying architecture since our society relies not only on critical consumer services like communication services, banking, shopping and logistics, but also applications traditionally served by dedicated networks such as military, emergency (e.g. TETRA) and railroad signalling networks (e.g. GSM-R) which all consider 5G as their network infrastructure in the future.
We believe Heterogeneous infrastructure has several benefits to ensure interoperability and open standards in 5G but this requirement also adds to the complexity of the network since different vendors may rely on different network structures, and different communication protocols even if they are defined by standard bodies such as 3GPP. When the goal of heterogenous infrastructure is added to requirements from new users, we can see that 5G represents very demanding requirements for the cellular operators and the network infrastructure vendors.

SimulaMet Centre for Resilient Networks and Applications have studied this topic over many years in fixed networks, in 4G cellular networks and for IoT applications. With the new laboratory, we will extend our studies to 5G New Radio and will also address how to provide robustness of the 5G core network by reducing the dependency for a centralized 5G infrastructure by virtualization.
Publications at The Center for Resilient Networks and Applications
Proceedings, refereed
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
In Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA). Sydney, New South Wales/Australia: Springer, 2022.Status: Accepted
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
Energy-efficient computing model is a popular choice for high performance as well as throughput oriented computing ecosystems. Mobile (computing) devices are becoming increasingly ubiquitous to our computing domain, but with limited resources (true both for computation as well as for energy). Hence, workload offloading from resource-constrained mobile devices to the Edge and maybe (later) to the cloud become necessary as well as useful. Thanks to the persistent technical breakthroughs in global wireless standards (or in mobile networks) together with the almost limitless amount of resources in public cloud platforms, workload offloading is possible and cheaper. In such scenarios, Mobile Edge Computing (MEC) resources could be provisioned in proximity to the users for supporting latency-sensitive applications. Here, two relevant problems could be: i) How to distribute workload to the resource pools of MEC as well as public (multi-)clouds? ii) How to manage such resource pools effectively? To answer these problems in this paper, we examine the performance of our proposed approach using the Reliable Server Pooling (RSerPool) framework in more detail. We also have outlined the resource pool management policies to effectively use RSerPool for workload offloading from mobile devices into the cloud/MEC ecosystem.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA) |
Publisher | Springer |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud computing, Load Distribution, Mobile Edge Computing (MEC), Multi-Cloud Computing, Reliable Server Pooling (RSerPool), Serverless Computing |
Book
AI and ML – Enablers for Beyond 5G Networks
Online: 5G PPP Technology Board, 2021.Status: Published
AI and ML – Enablers for Beyond 5G Networks
This white paper on AI and ML as enablers of beyond 5G (B5G) networks is based on contributions from almost 20 5G PPP projects, coordinated through the 5G PPP Technology Board, that research, implement and validate 5G and B5G network systems. The paper introduces the main relevant mechanisms in Artificial Intelligence (AI) and Machine Learning (ML), currently investigated and exploited for enhancing 5G and B5G networks.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications |
Publication Type | Book |
Year of Publication | 2021 |
Date Published | 05/2021 |
Publisher | 5G PPP Technology Board |
Place Published | Online |
URL | https://5g-ppp.eu/wp-content/uploads/2021/05/AI-MLforNetworks-v1-0.pdf |
DOI | 10.5281/zenodo.429989 |
Journal Article
A Multi-Parameter Comprehensive Optimized Algorithm for MPTCP Networks
Electronics 10, no. 16 (2021).Status: Published
A Multi-Parameter Comprehensive Optimized Algorithm for MPTCP Networks
With the increasing deployment of the Multi-Path Transmission Control Protocol (MPTCP) in heterogeneous network setups, there is a need to understand how its performance is affected in practice both by traditional factors such as round-trip time measurements, buffer predictive modelling and by calculating the impact factors of network subflows. Studies have shown that path management and packet scheduling have a large effect on overall performance and required limited resources with different congestion control parameters. Unfortunately, most of the previous studies have focused almost exclusively on the improvement of a single parameter, without a holistic view. To deal with this issue effectively, this paper puts forward a Multi-Parameter Comprehensive Optimized Algorithm (MPCOA), which can find the smaller buffer size and select the appropriate congestion control and path management algorithm on the premise of ensuring larger throughput. Experiments of three scenarios show that MPCOA can save the buffer space and subflow resources, and achieve high throughput. Meanwhile, a set of quantitative improvement results given by MPCOA is convenient for us to evaluate the quality of MPTCP network, and provide reference for our ongoing future work, like for 4G/5G, Internet of Things and Star Link networks.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | Electronics |
Volume | 10 |
Issue | 16 |
Date Published | 08/2021 |
Publisher | MDPI |
Place Published | Basel/Switzerland |
ISSN | 2079-9292 |
Keywords | Buffer Size, congestion control, MPCOA, Multi-Path TCP (MPTCP), Path Management |
URL | https://www.mdpi.com/2079-9292/10/16/1942/pdf |
DOI | 10.3390/electronics10161942 |
Proceedings, refereed
A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework
In Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN). Edmonton, Alberta, Canada: IEEE Computer Society, 2021.Status: Published
A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework
Mobile Edge Computing (MEC) places cloud resources nearby the user, to provide support for latency-sensitive applications. Offloading workload from resource-constrained mobile devices (such as smartphones) into the cloud ecosystem is becoming increasingly popular. In this demonstration, we show how to deploy a mobile network (with OpenAirInterface and Open Source MANO), as well as to adapt the Reliable Server Pooling (RSerPool) framework to efficiently manage MEC as well as multi-cloud resources to run an interactive demo application.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing, 5G-VINNI: 5G Verticals INNovation Infrastructure , The Center for Resilient Networks and Applications, NorNet |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 10/2021 |
Publisher | IEEE Computer Society |
Place Published | Edmonton, Alberta, Canada |
Keywords | Demonstration, Evolved Packet Core (EPC), Mobile Edge Computing (MEC), Multi-Cloud Computing, Network Function Virtualisation (NFV), Reliable Server Pooling (RSerPool) |
URL | https://www.ieeelcn.org/lcn46demos/Demo_4_1570754367.pdf |
An Exposed Closed-Loop Model for Customer-Driven Service Assurance Automation
In 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). Porto, Portugal: IEEE Computer Society, 2021.Status: Published
An Exposed Closed-Loop Model for Customer-Driven Service Assurance Automation
Artificial Intelligence (AI) is widely applied in telecommunications to enable zero-touch automation in network operation and service management. Due to the high complexity, deploying advanced AI mechanisms is not always feasible inside the operator’s network domains. Instead, via service exposures, it becomes possible for vertical customers to integrate their external AI solutions with the network and service management system to form a closed loop (CL) and contribute to the automation process. In this paper, we propose an exposed CL model based on service exposure and apply it to automate service assurance tasks like autoscaling in a network function virtualization (NFV) system orchestrated by ETSI Open Source MANO (OSM). A testbed is built to validate the model. It collects monitoring data from the OSM monitoring module and external monitoring tools. Vertical customers drive and customize their AI solutions to aggregate these data sets and run analytics to detect and predict anomalies prepared for scaling. Preliminary analysis demonstrates the added values of customer-driven monitoring and analysis via the exposed CL.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit) |
Pagination | 419–424 |
Date Published | 06/2021 |
Publisher | IEEE Computer Society |
Place Published | Porto, Portugal |
ISBN Number | 978-1-6654-1526-2 |
Keywords | Autonomous Management, Closed Loop, Machine learning, Monitoring, Service Exposure |
DOI | 10.1109/EuCNC/6GSummit51104.2021.9482533 |
Reliable Server Pooling Based Workload Offloading with Mobile Edge Computing: A Proof-of-Concept
In Advanced Information Networking and Applications (AINA 2021). Springer, 2021.Status: Published
Reliable Server Pooling Based Workload Offloading with Mobile Edge Computing: A Proof-of-Concept
In recent times, mobile broadband devices have become almost ubiquitous. However, battery-powered devices (such as smartphones), have limitations on energy consumption, computation power and storage space. Cloud computing, and in particular with the upcoming 5G networks, Mobile Edge Computing (MEC) can provide compute and storage services at the vicinity of the user (with a low communication latency). However, the complexity lies in how to simply and efficiently realise MEC services, with the auxiliary public (multi-)cloud resources? In this paper, we propose a proof-of-concept of using Reliable Server Pooling (RSerPool) as a light-weight layer of managing resource pools and handling application sessions with these pools. Our approach is simple, efficient, has low overhead and is available as open-source. Here, we demonstrate the usefulness of our approach by measuring in a test setup, with a 4G testbed connected to MEC and public multi-cloud resources.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab, 5G-VINNI: 5G Verticals INNovation Infrastructure , Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | Advanced Information Networking and Applications (AINA 2021) |
Pagination | 582-593 |
Publisher | Springer |
Keywords | 5G, Evolved Packet Core (EPC), Mobile Edge Computing (MEC), Multi-Cloud Computing, Network Function Virtualisation (NFV), Reliable Server Pooling (RSerPool) |
Talk, keynote
NorNet at Hainan University in 2021: From Simulations to Real-World Internet Measurements for Multi-Path Transport Research — A Remote Presentation
In Hainan University, Haikou, Hainan/People's Republic of China. Haikou, Hainan/People's Republic of China, 2021.Status: Published
NorNet at Hainan University in 2021: From Simulations to Real-World Internet Measurements for Multi-Path Transport Research — A Remote Presentation
A large fraction of the communication in the Internet is handled by the Transmission Control Protocol (TCP). Since the first deployments of this protocol more than 30 years ago, the spectrum of applications as well as the structure of the network have developed at a fast pace. For example, today's network devices, like smartphones and laptops — i.e. particularly many devices in the area of mobile computing — frequently have an interesting property: the existence of multiple IP addresses (IPv4 and/or IPv6). The addresses may even change due to mobility. This property, denoted as multi-homing, can be utilised for multi-path transport, i.e. the simultaneous usage of multiple paths in the network to improve performance. Multi-path transport is a hot topic in the Internet Engineering Task Force (IETF), which is the standardisation organisation for the Internet. This talk provides an overview of the work in the areas of multi-homing and multi-path transport, with focus on the area of the protocols TCP and Stream Control Transmission Protocol (SCTP) with their experimental extensions Multi-Path TCP (MPTCP) and Concurrent Multi-Path Transfer for SCTP (CMT-SCTP). It particularly shows the sequence of research and selected results, beginning from a simple simulation model, via lab setups and small Internet scenarios, up to the large-scale, international testbed project NorNet. NorNet, and particularly its landline network part NorNet Core, is furthermore described in some detail. Based on NorNet, it is finally possible to validate simulation results in real-world, multi-homed networks, in order to provide valuable input to the ongoing IETF standardisation processes of MPTCP and CMT-SCTP. Particularly, it will also show how the NorNet testbed can be utilised for research at Hainan University in 2021.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab |
Publication Type | Talk, keynote |
Year of Publication | 2021 |
Location of Talk | Hainan University, Haikou, Hainan/People's Republic of China |
Date Published | 01/2021 |
Place Published | Haikou, Hainan/People's Republic of China |
Keywords | Introduction, Multi-Homing, NorNet, NorNet Core, NorNet Edge, Status, Testbed |
Talks, invited
NorNet at Hainan University in 2021: Getting Started with NorNet Core — A Remote Tutorial
In Haikou, Hainan/People's Republic of China. Haikou, Hainan/People's Republic of China, 2021.Status: Published
NorNet at Hainan University in 2021: Getting Started with NorNet Core — A Remote Tutorial
This tutorial — presented for students at the College of Information Science and Technology (CIST) at Hainan University — provides an introduction on how to get access to the NorNet Core testbed as well as how to run experiments in the testbed in 2021.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab |
Publication Type | Talks, invited |
Year of Publication | 2021 |
Location of Talk | Haikou, Hainan/People's Republic of China |
Place Published | Haikou, Hainan/People's Republic of China |
Keywords | Multi-Homing, Multi-Path Transport, NorNet, NorNet Core, Testbed, Tutorial |
Proceedings, refereed
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
In Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN). Sydney, New South Wales/Australia: IEEE Computer Society, 2020.Status: Published
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
The Cloud-based Radio Access Network (Cloud-RAN) architecture and Network Function Virtualization (NFV) are key enablers to building future mobile networks in a flexible and cost-efficient way. With early deployments of the fifth generation of mobile technologies - 5G - around the world, setting up 4G/5G experimental infrastructures is necessary to optimally design 5G networks. In this demo, we present a custom small-scale 4G/5G testbed based on OpenAirInterface and Open Source MANO. The testbed integrates a Cloud-RAN based on switched Ethernet Xhaul and functional splitting, with an Evolved Packet Core (EPC) deployed as a Virtual Network Function (VNF) in a cloud infrastructure. Using Open Source MANO, this demo shows the administration and monitoring of the EPC VNF components. Moreover, as proof of concept, collection and visualization of telemetry will be shown for two smart-phones connected to the network through the Cloud-RAN.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 11/2020 |
Publisher | IEEE Computer Society |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud Radio Access Network (Cloud-RAN), Ethernet Xhaul, Fronthaul, Functional Splits, Network Function Virtualisation (NFV), Open Source MANO (OSM) |
Talks, invited
Custom-Made Enhanced Packet Cores as Network Services for 4G/5G Testbeds managed with Open Source MANO
In M5G-2020-Workshop (Online), 2020.Status: Published
Custom-Made Enhanced Packet Cores as Network Services for 4G/5G Testbeds managed with Open Source MANO
Setting up Enhanced Packet Cores (EPC) – like the Mosaic5G OpenAirInterface-based EPC – for 4G/5G Testbeds is a complicated and error-prone task. Therefore, we developed the SimulaMet OpenAirInterface VNF, a complex 4-VDU VNF, which upon instantiation builds the components of the EPC from scratch from given source Git repositories. That is, based on the parametrisation, users can easily create tailor-made EPCs for their projects, particularly EPCs based on the Mosaic5G FlexRAN sources. In this presentation, we would like to shortly highlight the solutions chosen to efficiently use OSM for handling the instantiation process, performing telemetry, and debugging issues. That is, we particularly would like to present to the Mosaic5G audience some lessons learned during the ongoing development.
Afilliation | Communication Systems |
Project(s) | NorNet, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering |
Publication Type | Talks, invited |
Year of Publication | 2020 |
Location of Talk | M5G-2020-Workshop (Online) |
Keywords | 5G, Evolved Packet Core, Network Function Virtualisation, Open Source MANO, OpenAirInterface |
GAIA

Background
Recent advances in cloud computing and higher network capacities have led to online services being hosted at diverse geographic locations. Outsourcing of services for commercial reasons have become common. The growth of the internet infrastructure has happened dynamically and has been based on trust. Therefore, many countries now rely on services that are not contained within their respective national borders. These may be general services, such as Google, WhatsApp and Facebook as well as the DNS infrastructure and microservices critical to national services like health and online banking.
This development has led to our society becoming increasingly vulnerable to cyber-attacks and major disruptions. Recent increases in cyber attacks and their potential harmful ramifications have made combating cyber vulnerabilities a national security priority. Consequently, an increasing number of states are calling for tighter controls on service placement and Internet connectivity in order to maintain national autonomy. While these fears could be warranted, a premature push in this direction may undermine the very fabric of openness and trust that binds the Internet together.
In this respect, GAIA aims to fill an important gap in our current knowledge, which is the lack of maps that describe the geographic distribution of online services. Such maps will provide an understanding of how Internet traffic travels between different countries and allow us to explore how internet connectivity interplays with geopolitics. GAIA will achieve that through an interdisciplinary effort that combines technological and political aspects of the problem. To this end, the project consortium comprises a unique set of stakeholders, including computer scientists, social and political scientists, regulatory bodies and network operators.
See GAIA's webpages here.
Partner
SimulaMet is partnering with The Norwegian Institute of International Affairs (NUPI) to deliver this project.

Outcomes
The insights gained by the GAIA project will help reducing the vulnerability of our society to potential harmful attacks on communication infrastructures which in worse case could harm our economy, endager our democracy and even result in loss of
The envisioned results of GAIA will thus contribute to improve our understanding of the complex interplay between digital vulnerabilities and national autonomy, which will be of relevance to policy makers, technologists and end users.
And just as important, GAIA's findings will provide regulators and policy makers with expert opinions that will help navigating the intricate conflict of interest between national autonomy and the trust-based openness on which the current Internet is based.
Consortium and methods
The project consortium comprises a unique set of stakeholders, including computer scientists, social and political scientists, regulatory bodies and network operators. GAIA will be using a combination of methods; measurement and data analytics, testbed experimentations as well as interviews and case studies.

Publications at The Center for Resilient Networks and Applications
Journal Article
Huawei, 5G and Security: Technological Limitations and Political Responses
Development and Change 52, no. 5 (2021).Status: Published
Huawei, 5G and Security: Technological Limitations and Political Responses
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, GAIA |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | Development and Change |
Volume | 52 |
Issue | 5 |
Publisher | Wiley |
Poster
Anomaly Detection in Optical Links Using State of Polarization Monitoring
2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal, 2021.Status: Published
Anomaly Detection in Optical Links Using State of Polarization Monitoring
Afilliation | Communication Systems |
Project(s) | GAIA |
Publication Type | Poster |
Year of Publication | 2021 |
Place Published | 2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal |
Keywords | Anomaly detection, Machine learning, Optical Fibre, State of Polarization |
URL | https://www.eucnc.eu/poster-a/ |
Public outreach
5G og sikkerhet
Nyhetsmorgen: NRK P2, 2021.Status: Published
5G og sikkerhet
Afilliation | Communication Systems |
Project(s) | GAIA |
Publication Type | Public outreach |
Year of Publication | 2021 |
Publisher | NRK P2 |
Place Published | Nyhetsmorgen |
Talks, invited
5G: Norge mellom stormaktene
In Nasjonal sikkerhetsdag, Nasjonal Kommunikasjonsmyndighet, Norway. Nasjonal Kommunikasjonsmyndighet, 2021.Status: Published
5G: Norge mellom stormaktene
Afilliation | Communication Systems |
Project(s) | GAIA |
Publication Type | Talks, invited |
Year of Publication | 2021 |
Location of Talk | Nasjonal sikkerhetsdag, Nasjonal Kommunikasjonsmyndighet, Norway |
Publisher | Nasjonal Kommunikasjonsmyndighet |
Skytjenester og Digitale Verdikjeder
In Seminar Nasjonalt cybersikkerhetssenter, 2021.Status: Published
Skytjenester og Digitale Verdikjeder
Afilliation | Communication Systems |
Project(s) | GAIA |
Publication Type | Talks, invited |
Year of Publication | 2021 |
Location of Talk | Seminar Nasjonalt cybersikkerhetssenter |
Proceedings, refereed
On the Accuracy of Country-Level IP Geolocation
In Applied Networking Research Workshop (ANRW). Madrid/Spain: ACM, 2020.Status: Published
On the Accuracy of Country-Level IP Geolocation
The proliferation of online services comprised of globally spread microservices has security and performance implications. Understanding the underlying physical paths connecting end points has become important. This paper investigates the accuracy of commonly used IP geolocation approaches in geolocating end-to-end IP paths. To this end, we perform a controlled measurement study to collect IP level paths. We find that existing databases tend to geolocate IPs that belong to networks with global presence and those move between networks erroneously. A small percentage of IP geolocation disagreement between databases results in a significant disagreement when geolocating end-to-end paths. Geolocating one week of RIPE traceroute data validates our observations.
Afilliation | Communication Systems |
Project(s) | GAIA, NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Applied Networking Research Workshop (ANRW) |
Date Published | 07/2020 |
Publisher | ACM |
Place Published | Madrid/Spain |
ISBN Number | 978-1-4503-8039-3 |
Keywords | Geolocation Approaches, Geolocation Databases, IP Geolocation |
DOI | 10.1145/3404868.3406664 |
Optical Fibre as a Sensor for Network Anomaly Detection
In ACM SIGCOMM 2020 Workshop on Optical Systems Design, 2020.Status: Accepted
Optical Fibre as a Sensor for Network Anomaly Detection
Optical fibres are the backbone of modern Information Technology infrastructure connecting billions of users through high-speed networks. With a drastic increase in the number of internet users, vulnerability and security issues in the optical fibre network become increasingly important. In this paper, we propose a detection method for early warning of anomalies in optical networks. The method is based on monitoring and analyzing changes in the state of polarization of the optical signal targeting differentiating between different physical impacts and movements of the fibre caused by e.g. eavesdropping, cut by digging and thunderstorms.
Afilliation | Communication Systems |
Project(s) | GAIA |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | ACM SIGCOMM 2020 Workshop on Optical Systems Design |
HiPerConTracer - A Versatile Tool for IP Connectivity Tracing in Multi-Path Setups
In Proceedings of the 28th IEEE International Conference on Software, Telecommunications and Computer Networks (SoftCOM). Hvar, Dalmacija/Croatia: IEEE, 2020.Status: Published
HiPerConTracer - A Versatile Tool for IP Connectivity Tracing in Multi-Path Setups
Nowadays, we see a steadily increasing number of Internet devices with connections to multiple networks. For example, every smartphone provides mobile broadband and Wi-Fi connectivity. Multi-path transport protocols, like MPTCP, CMT-SCTP or Multipath-QUIC, allow for utilising all connected networks simultaneously. However, while there is a lot of research on the Transport Layer aspects of multi-path transport, there is not much work on the Network Layer perspective, yet.
In this paper, we introduce our Open Source tool HiPerConTracer (High-Performance Connectivity Tracer) for efficient, parallelised, long-term measurements of the path connectivity characteristics among multi-homed Internet systems. HiPerConTracer is now running as a permanent feature in the NorNet Core infrastructure, which is used for research on multi-homed systems, and in particular for research on multi-path transport. Based on the HiPerConTracer data collected in NorNet Core so far, we finally present some interesting results from the analysis of the inter-continental site connectivity between China and Norway in January 2020.
Afilliation | Communication Systems |
Project(s) | NorNet, GAIA, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 28th IEEE International Conference on Software, Telecommunications and Computer Networks (SoftCOM) |
Publisher | IEEE |
Place Published | Hvar, Dalmacija/Croatia |
Keywords | HiPerConTracer, Multi-Path Transport, NorNet, NorNet Core, Ping, Traceroute |
5G-VINNI: 5G Verticals INNovation Infrastructure

5G-VINNI will accelerate the uptake of 5G in Europe by providing an end-to-end (E2E) facility that validates the performance of new 5G technologies by operating trials of advanced vertical sector services. The 5G-VINNI strategy to achieve this involves:
- Designing the most advanced 5G facility to demonstrate that technical and business 5G KPIs can be met,
- Building and operating 7 interworking instances of the E2E facility to prove the capabilities and openness of the system,
- Creating user friendly zero-touch orchestration, operations and management systems for the 5G-VINNI facilities to ensure operational efficiencies and optimal resource use,
- Proving the 5G-VINNI capabilities through extensive experiments and measurements of performance against the 5G KPIs,
- Developing a viable 5G ecosystem model to support the NaaS infrastructure provision as a sustainable business beyond the project, and
- Promoting the value of 5G-VINNI results to the relevant standards bodies and open source communities.
The 5G-VINNI E2E facility will demonstrate the achievement of 5G KPIs across a range of combinations and permutations of new 5G access technologies and end-user equipment types interconnected by the most advanced 5G core network technologies available. For this 5G-VINNI will leverage the latest 5G technologies, including results from previous 5G PPP projects. This approach employs Network Function Virtualization, Network Slicing and a rigorous automated testing campaign to validate the 5G KPIs under various combinations of technologies and network loads.
To ensure realistic load scenarios 5G-VINNI will create and make available an openness framework to give verticals and peer projects easy access to the 5G-VINNI facilities, both legally and technically, e.g. via open APIs. The 5G-VINNI facilities include 7 infrastructure instances in nationally supported 5G nodes across Europe; this number may be expanded as the ICT-19 projects come on-line in 2019.
Funding source

This project has received funding from the European Horizon 2020 Programme for research, technological development and demonstration under grant agreement n° 815279 - 5G VINNI
All partners
Simula Metropolitan Centre for Digital Engineering (Norway)
Telenor ASA (Norway)
British Telecommunications Public Limited Company (UK)
Telefonica Investigacion y Desarollo SA TID (Spain)
Samsung Electronics (UK)
Limited SAMS (UK)
Huawei Technologies Duesseldorf GMBH (Germany)
Huawei Technologies Norway AS (Norway)
Ericsson AS (Norway)
Nokia Solutions and Networks (Finland)
Software Radio Systems Limited SRS 9Ireland)
Lime Microsystems LTD (UK)
EANTC Aktiengesellschaft (Germany)
Keysight Technologies (Denmark)
APS KEYS (Denmark)
Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschung E.V. FHG (Germany)
EURESCOM-European Institute for Research and Strategic Studies in Telecommunications GMBH EUR (Germany)
Altice Labs SA (Portugal)
Panepistimio Patron UOP (Greece)
Universidad Carlos III de Madrid (Spain)
Athens University of Economics and Business – Research Center AUEB (Greece)
Intracom SA Telecom Solutions ICOM (Greece)
SES Techcom SA SES (Luxembourg)
Cisco Norway AS (Norway)
Engineering-Ingegneria Informatica SPA (Italy)
Social media presence
Publications at The Center for Resilient Networks and Applications
Proceedings, refereed
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
In Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA). Sydney, New South Wales/Australia: Springer, 2022.Status: Accepted
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
Energy-efficient computing model is a popular choice for high performance as well as throughput oriented computing ecosystems. Mobile (computing) devices are becoming increasingly ubiquitous to our computing domain, but with limited resources (true both for computation as well as for energy). Hence, workload offloading from resource-constrained mobile devices to the Edge and maybe (later) to the cloud become necessary as well as useful. Thanks to the persistent technical breakthroughs in global wireless standards (or in mobile networks) together with the almost limitless amount of resources in public cloud platforms, workload offloading is possible and cheaper. In such scenarios, Mobile Edge Computing (MEC) resources could be provisioned in proximity to the users for supporting latency-sensitive applications. Here, two relevant problems could be: i) How to distribute workload to the resource pools of MEC as well as public (multi-)clouds? ii) How to manage such resource pools effectively? To answer these problems in this paper, we examine the performance of our proposed approach using the Reliable Server Pooling (RSerPool) framework in more detail. We also have outlined the resource pool management policies to effectively use RSerPool for workload offloading from mobile devices into the cloud/MEC ecosystem.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA) |
Publisher | Springer |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud computing, Load Distribution, Mobile Edge Computing (MEC), Multi-Cloud Computing, Reliable Server Pooling (RSerPool), Serverless Computing |
Talks, contributed
NorNet – A Linux- and Open-Source-Software-based International Platform for Networking Research
In Virtual. Melbourne, Australia: Linux Conference Australia, 2022.Status: Published
NorNet – A Linux- and Open-Source-Software-based International Platform for Networking Research
The NorNet testbed (https://www.nntb.no) is an Internet testbed platform for research on multi-homed systems. The particular property of multi-homed systems is to be connected to multiple Internet Service Providers (ISP) simultaneously. Its initial purpose is of course to still provide connectivity in case of ISP/network failures. But does it really work that well, also with current protocols and applications? And redundancy does not come for free. A user connected to multiple ISPs will also receive multiple Internet bills each month. So, is there a possibility to make further use of multi-homing in the usual case where nothing goes wrong? Obviously, there are a lot of interesting research questions, which need to be examined in realistic Internet setups! Therefore, we are building up the NorNet open Internet testbed platform as a Linux- and Open-Source-software-based infrastructure, which currently spreads over multiple sites in different countries.
NorNet makes extensive use of advanced Linux features like Kernel-based Virtualisation (KVM), Linux Containers (LXC), BTRFS file system features, IP routing rules, Stream Control Transmission Protocol (SCTP), Multi-Path TCP (MPTCP), and many more. The goal of this talk is therefore to present an overview of the testbed, its underlying Linux features, and how they are combined to provide the multi-homing features to the various testbed users. This particularly includes an overview of how to make use of multi-path transport with MPTCP – based on the Linux MPTCP implementation – in multi-homed environments. The idea is to provide guidelines for also utilising multi-homing features in own projects.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Talks, contributed |
Year of Publication | 2022 |
Location of Talk | Virtual |
Publisher | Linux Conference Australia |
Place Published | Melbourne, Australia |
Keywords | Linux, Multi-Homing, Multi-Path Transport, NorNet, Open Source, Testbed |
URL | https://lca2022.linux.org.au/schedule/presentation/52/ |
Book
AI and ML – Enablers for Beyond 5G Networks
Online: 5G PPP Technology Board, 2021.Status: Published
AI and ML – Enablers for Beyond 5G Networks
This white paper on AI and ML as enablers of beyond 5G (B5G) networks is based on contributions from almost 20 5G PPP projects, coordinated through the 5G PPP Technology Board, that research, implement and validate 5G and B5G network systems. The paper introduces the main relevant mechanisms in Artificial Intelligence (AI) and Machine Learning (ML), currently investigated and exploited for enhancing 5G and B5G networks.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications |
Publication Type | Book |
Year of Publication | 2021 |
Date Published | 05/2021 |
Publisher | 5G PPP Technology Board |
Place Published | Online |
URL | https://5g-ppp.eu/wp-content/uploads/2021/05/AI-MLforNetworks-v1-0.pdf |
DOI | 10.5281/zenodo.429989 |
Journal Article
Optimising Performance for NB-IoT UE Devices through Data Driven Models
Journal of Sensor and Actuator Networks 10 (2021).Status: Published
Optimising Performance for NB-IoT UE Devices through Data Driven Models
<p>This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.</p>
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | Journal of Sensor and Actuator Networks |
Volume | 10 |
Number | 1 |
Publisher | MDPI |
Place Published | Journal of Sensor and Actuator Networks |
ISSN | 2224-2708 |
URL | https://www.mdpi.com/2224-2708/10/1/21 |
DOI | 10.3390/jsan10010021 |
Proceedings, refereed
A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework
In Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN). Edmonton, Alberta, Canada: IEEE Computer Society, 2021.Status: Published
A Demo of Workload Offloading in Mobile Edge Computing Using the Reliable Server Pooling Framework
Mobile Edge Computing (MEC) places cloud resources nearby the user, to provide support for latency-sensitive applications. Offloading workload from resource-constrained mobile devices (such as smartphones) into the cloud ecosystem is becoming increasingly popular. In this demonstration, we show how to deploy a mobile network (with OpenAirInterface and Open Source MANO), as well as to adapt the Reliable Server Pooling (RSerPool) framework to efficiently manage MEC as well as multi-cloud resources to run an interactive demo application.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing, 5G-VINNI: 5G Verticals INNovation Infrastructure , The Center for Resilient Networks and Applications, NorNet |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | Proceedings of the 46th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 10/2021 |
Publisher | IEEE Computer Society |
Place Published | Edmonton, Alberta, Canada |
Keywords | Demonstration, Evolved Packet Core (EPC), Mobile Edge Computing (MEC), Multi-Cloud Computing, Network Function Virtualisation (NFV), Reliable Server Pooling (RSerPool) |
URL | https://www.ieeelcn.org/lcn46demos/Demo_4_1570754367.pdf |
An Exposed Closed-Loop Model for Customer-Driven Service Assurance Automation
In 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). Porto, Portugal: IEEE Computer Society, 2021.Status: Published
An Exposed Closed-Loop Model for Customer-Driven Service Assurance Automation
Artificial Intelligence (AI) is widely applied in telecommunications to enable zero-touch automation in network operation and service management. Due to the high complexity, deploying advanced AI mechanisms is not always feasible inside the operator’s network domains. Instead, via service exposures, it becomes possible for vertical customers to integrate their external AI solutions with the network and service management system to form a closed loop (CL) and contribute to the automation process. In this paper, we propose an exposed CL model based on service exposure and apply it to automate service assurance tasks like autoscaling in a network function virtualization (NFV) system orchestrated by ETSI Open Source MANO (OSM). A testbed is built to validate the model. It collects monitoring data from the OSM monitoring module and external monitoring tools. Vertical customers drive and customize their AI solutions to aggregate these data sets and run analytics to detect and predict anomalies prepared for scaling. Preliminary analysis demonstrates the added values of customer-driven monitoring and analysis via the exposed CL.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit) |
Pagination | 419–424 |
Date Published | 06/2021 |
Publisher | IEEE Computer Society |
Place Published | Porto, Portugal |
ISBN Number | 978-1-6654-1526-2 |
Keywords | Autonomous Management, Closed Loop, Machine learning, Monitoring, Service Exposure |
DOI | 10.1109/EuCNC/6GSummit51104.2021.9482533 |
Reliable Server Pooling Based Workload Offloading with Mobile Edge Computing: A Proof-of-Concept
In Advanced Information Networking and Applications (AINA 2021). Springer, 2021.Status: Published
Reliable Server Pooling Based Workload Offloading with Mobile Edge Computing: A Proof-of-Concept
In recent times, mobile broadband devices have become almost ubiquitous. However, battery-powered devices (such as smartphones), have limitations on energy consumption, computation power and storage space. Cloud computing, and in particular with the upcoming 5G networks, Mobile Edge Computing (MEC) can provide compute and storage services at the vicinity of the user (with a low communication latency). However, the complexity lies in how to simply and efficiently realise MEC services, with the auxiliary public (multi-)cloud resources? In this paper, we propose a proof-of-concept of using Reliable Server Pooling (RSerPool) as a light-weight layer of managing resource pools and handling application sessions with these pools. Our approach is simple, efficient, has low overhead and is available as open-source. Here, we demonstrate the usefulness of our approach by measuring in a test setup, with a 4G testbed connected to MEC and public multi-cloud resources.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, SMIL: SimulaMet Interoperability Lab, 5G-VINNI: 5G Verticals INNovation Infrastructure , Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2021 |
Conference Name | Advanced Information Networking and Applications (AINA 2021) |
Pagination | 582-593 |
Publisher | Springer |
Keywords | 5G, Evolved Packet Core (EPC), Mobile Edge Computing (MEC), Multi-Cloud Computing, Network Function Virtualisation (NFV), Reliable Server Pooling (RSerPool) |
Talks, contributed
Demonstration of P4-Based In-Band Telemetry for OSM-Orchestrated 4G/5G Testbeds
In OSM #12 Ecosystem Day (virtual), 2021.Status: Published
Demonstration of P4-Based In-Band Telemetry for OSM-Orchestrated 4G/5G Testbeds
The SimulaMet OpenAirInterface VNF provides an OpenAirInterface-based Enhanced Packet Core (EPC), with separate VDUs for HSS, MME, SPGW-C and SPGW-U. To allow for advanced in-band telemetry, we have extended this VNF to add switches with Programming Protocol-independent Packet Processors (P4) to all relevant virtual links inside the EPC. P4 allows full programability of the packet forwarding behaviour, and especially allows to extend packets with additional information for in-band telemetry. This information can be read by other P4 instances to allow for fine-granular performance data collection. In this presentation and live demonstration, we would like show the solutions chosen to efficiently use OSM for handling our extended EPC, and in particular we would like to highlight the possibilities to perform P4-based in-band telemetry to evaluate the performance of the mobile network. Finally, we would also like to show the audience a live demo of our testbed setup with telemetry collection.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering |
Publication Type | Talks, contributed |
Year of Publication | 2021 |
Location of Talk | OSM #12 Ecosystem Day (virtual) |
Type of Talk | Demo presentation |
Keywords | 5G, In-Band Telemetry, Network Function Virtualisation, Open Source MANO, OpenAirInterface, P4 |
Journal Article
Dissecting Energy Consumption of NB-IoT Devices Empirically
IEEE Internet of Things Journal 8, no. 2 (2020): 1224-1242.Status: Published
Dissecting Energy Consumption of NB-IoT Devices Empirically
3GPP has recently introduced NB-IoT, a new mobile communication standard offering a robust and energy efficient connectivity option to the rapidly expanding market of Internet of Things (IoT) devices. To unleash its full potential, end-devices are expected to work in a plug and play fashion, with zero or minimal configuration of parameters, still exhibiting excellent energy efficiency. We performed the most comprehensive set of empirical measurements with commercial IoT devices and different operators to date, quantifying the impact of several parameters to energy consumption. Our findings prove that parameters’ settings does impact energy consumption, so proper configuration is necessary. We shed light on this aspect by first illustrating how the nominal standard operational modes map into real current consumption patterns of NB-IoT devices. Further, we investigated which device-reported metadata metrics better reflected performance and implemented an algorithm to automatically identify device state in current time series logs. We worked with two major western European operators to provide a measurement-driven analysis of the energy consumption and network performance of two popular NB-IoT boards under different parameter configurations. We observed that energy consumption is mostly affected by the paging interval in Connected state, set by the base station. However, not all operators correctly implement such settings. Furthermore, under the default configuration, energy consumption in not strongly affected by packet size nor by signal quality, unless it is extremely bad. Our observations indicate that simple modifications to the default parameters’ settings can yield great energy savings.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Journal Article |
Year of Publication | 2020 |
Journal | IEEE Internet of Things Journal |
Volume | 8 |
Issue | 2 |
Pagination | 1224 - 1242 |
Date Published | 08/2020 |
Publisher | IEEE |
ISSN | 2327-4662 |
Keywords | energy consumption, Internet of things, LTE, NB-IoT |
DOI | 10.1109/JIOT.2020.3013949 |
Proceedings, refereed
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
In Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN). Sydney, New South Wales/Australia: IEEE Computer Society, 2020.Status: Published
Integrating Cloud-RAN with Packet Core as VNF Using Open Source MANO and OpenAirInterface
The Cloud-based Radio Access Network (Cloud-RAN) architecture and Network Function Virtualization (NFV) are key enablers to building future mobile networks in a flexible and cost-efficient way. With early deployments of the fifth generation of mobile technologies - 5G - around the world, setting up 4G/5G experimental infrastructures is necessary to optimally design 5G networks. In this demo, we present a custom small-scale 4G/5G testbed based on OpenAirInterface and Open Source MANO. The testbed integrates a Cloud-RAN based on switched Ethernet Xhaul and functional splitting, with an Evolved Packet Core (EPC) deployed as a Virtual Network Function (VNF) in a cloud infrastructure. Using Open Source MANO, this demo shows the administration and monitoring of the EPC VNF components. Moreover, as proof of concept, collection and visualization of telemetry will be shown for two smart-phones connected to the network through the Cloud-RAN.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, NorNet, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , SMIL: SimulaMet Interoperability Lab |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 45th IEEE Conference on Local Computer Networks (LCN) |
Date Published | 11/2020 |
Publisher | IEEE Computer Society |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud Radio Access Network (Cloud-RAN), Ethernet Xhaul, Fronthaul, Functional Splits, Network Function Virtualisation (NFV), Open Source MANO (OSM) |
LUCS: Learning to Understand and Control nation-wide Smart grids of energy prosumers

The world energy market is changing, with many developed countries investing into green energy as well as distributed energy production. This transformation has led to the possibility of prosumers- the producer of relatively small and sporadic amounts of energy, to significantly influence the market and the power quality in the grid. Nonetheless, a wider proliferation of privately owned solar collectors, windmills, and other kinds of green generators make it challenging to manage the flow of energy that is no longer uni-directional.
LUCS is bringing together research groups and educational institutions that are committed to educating the next generation of researchers and engineers by joining forces to provide knowledge and experience that will assist Masters and early doctoral students with experiment design and performance analyses of smart grid systems. The research-related objectives of LUCS are to facilitate interaction of researchers for the purpose of developing and implementing novel approaches to improve the performance and robustness of the smart grid systems.
Final goal
LUCS will conduct four main activities:
-
Organize 4 summer schools
- Develop a common smart grid curriculum at University of Oslo and Technical University of Berlin
- Organize 3 research workshops
- Sponsor the mobility of researchers to strengthen the group collaboration
Summer schools
3 summer schools have been held since 2018, and the final summer school, led by University of Oslo (UiO), will be in the summer of 2022 at Sundvollen.
-
Future Energy Information Networks, was held in Oslo from September 3rd to 7th, 2018.
- Smart Cities for Sustainable Energy Future - from design to practice, was held in Berlin from August 19th to 30th, 2019.
- Green Computing meets Green Energy, was held in Lille from September 5th to 10th, 2021. The Lille summer school was the first in-person event since the pandemic. More information on this summer school is found in this article.
Workshops
3 collaborative LUCS-PACE research workshops have been held.
-
The first workshop was a combined kick-off held in Oslo.
- The second LUCS-PACE workshop was held virtually due to Covid-19, from 25th to 26th of April, 2021. A summary of the workshop is available through this article.
- The final workshop was led by the Technical University of Munich (TuM), and took place at their premises in Munich, from 2nd to 4th of March, 2022. Read more about this workshop.
Funding source
INTPART-International Partnerships for Excellent Education and Research
All partners
- Simula Research Laboratory, Norway
- University of Oslo, Norway
- Technical University of Berlin (TU Berlin), Germany
- German Turkish Advanced Research Center for ICT (GT-ARC) Germany
Project leader
David Hayes, Center for Resilient Networks and Applications, SimulaMet, Norway
MONROE: Measuring Mobile Broadband Networks in Europe

Given today's importance of mobile broadband (MBB) networks, there is a strong need for objective information about their performance, particularly, the quality experienced by the end user. MONROE proposes to design, build and operate the first European transnational open platform for independent, multi-homed, large-scale monitoring and performance assessment of MBB networks in heterogeneous environments. It also provides WiFi connectivity mimicking multi-homing in smartphones with both MBB and WiFi interfaces, to allow experimenting on different access technologies as well as to explore new ways of combining them to increase performance and robustness. Moreover, the platform's users are in the core of the MONROE project. Following the FIRE’s philosophy, MONROE offers a user-oriented closed-loop system design in which the experimental platform is open to external users, and where users are incorporated early on in the experimental design process. Second, MONROE will provide Experiments as a Service (EaaS), thus lowering the barrier for using the platform to external experimenters and users, by providing well-documented tools and adjustable, flexible, high-level scripts to execute experiments, collect results, and analyze data. Interoperability with existing FIRE and FP7 measurement platforms, jointly with the effort of MONROE to develop business and funding models, will guarantee sustainability and usefulness of the platform.
Funding source:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644399. (H2020-ICT-2014-1)
All partners:
- Simula (Norway)
- Imdea Networks (Spain)
- Karlstad University (Sweden)
- Politecnico Di Torino (Italy)
- Nextworks (Italy)
- Celerway Communications (Norway)
- Telenor (Norway)
Social media presence
Publications at The Center for Resilient Networks and Applications
Journal Article
Large scale “speedtest” experimentation in Mobile Broadband Networks
Computer Networks 184, no. 31 (2021): 107629.Status: Published
Large scale “speedtest” experimentation in Mobile Broadband Networks
Afilliation | Communication Systems |
Project(s) | Department of Mobile Systems and Analytics, MONROE: Measuring Mobile Broadband Networks in Europe |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | Computer Networks |
Volume | 184 |
Issue | 31 |
Pagination | 107629 |
Date Published | Oct-17-2021 |
Publisher | Elsevier |
ISSN | 13891286 |
DOI | 10.1016/j.comnet.2020.107629 |
Proceedings, refereed
Mobile Network Performance during the COVID-19 Outbreak from a Testbed Perspective
In Proceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization. New York, NY, USA: Association for Computing Machinery, 2020.Status: Published
Mobile Network Performance during the COVID-19 Outbreak from a Testbed Perspective
COVID-19 has changed our lives and continues to have a drastic impact. It forces us to impose restrictive social distancing measures and leads us to rely more on the Internet. Mobile networks become one of the major means to access the Internet for most of us. We investigate the performance of 9 mobile networks in Europe around the time when restrictions were imposed, considering web QoE, throughput, RTT, and signal coverage. Our results show countries' mobile networks are impacted by COVID-19 (as high as 46 % increase in page load time) at different times based on the outbreak timelines in these countries. Moreover, we find that operators responded properly and the network performance is back to the pre-COVID-19 times.
Afilliation | Communication Systems |
Project(s) | Department of Mobile Systems and Analytics, MONROE: Measuring Mobile Broadband Networks in Europe |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | Proceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization |
Pagination | 110–117 |
Publisher | Association for Computing Machinery |
Place Published | New York, NY, USA |
ISBN Number | 9781450380829 |
Keywords | COVID-19, mobile network performance, RTT, signal coverage, Throughput, web QoE |
URL | https://doi.org/10.1145/3411276.3412194 |
DOI | 10.1145/3411276.3412194 |
Mobile Network Performance during the COVID-19 Outbreak from a Testbed Perspective
In MobiCom '20: The 26th Annual International Conference on Mobile Computing and NetworkingProceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization. London United KingdomNew York, NY, USA: ACM, 2020.Status: Published
Mobile Network Performance during the COVID-19 Outbreak from a Testbed Perspective
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Proceedings, refereed |
Year of Publication | 2020 |
Conference Name | MobiCom '20: The 26th Annual International Conference on Mobile Computing and NetworkingProceedings of the 14th International Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization |
Publisher | ACM |
Place Published | London United KingdomNew York, NY, USA |
ISBN Number | 9781450380829 |
URL | https://dl.acm.org/doi/proceedings/10.1145/3411276https://dl.acm.org/doi... |
DOI | 10.1145/341127610.1145/3411276.3412194 |
Journal Article
Low-Latency Scheduling in MPTCP
IEEE Transactions on Networking 27, no. 1 (2019).Status: Published
Low-Latency Scheduling in MPTCP
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Journal Article |
Year of Publication | 2019 |
Journal | IEEE Transactions on Networking |
Volume | 27 |
Issue | 1 |
Date Published | 02/2019 |
Publisher | ACM IEEE |
Dissecting the Performance of YouTube Video Streaming in Mobile Networks
International Journal on Network Management Early View (2019): e2058.Status: Published
Dissecting the Performance of YouTube Video Streaming in Mobile Networks
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Journal Article |
Year of Publication | 2019 |
Journal | International Journal on Network Management |
Volume | Early View |
Pagination | e2058 |
Publisher | Wiley |
DOI | 10.1002/nem.2058 |
Results from Running an Experiment as a Service Platform for Mobile Broadband Networks in Europe
Elsevier Computer Communications 133 (2019): 89-101.Status: Published
Results from Running an Experiment as a Service Platform for Mobile Broadband Networks in Europe
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Journal Article |
Year of Publication | 2019 |
Journal | Elsevier Computer Communications |
Volume | 133 |
Pagination | 89-101 |
Date Published | 01/2019 |
Publisher | Elsevier |
Proceedings, refereed
On the importance of TCP splitting proxies for future 5G mmWave communications
In IEEE Local Computer Networks (LCN) Symposium on Emerging Topics in Networking. IEEE, 2019.Status: Published
On the importance of TCP splitting proxies for future 5G mmWave communications
Abstract—5G mmWave technology promises capacities 10 to 100 times that of 4G. However, mmWave links are very sensitive to having direct line of sight between sender and receiver, with dramatically fluctuating capacities due to transient blocking and shadow fading, which can substantially degrade TCP performance. TCP-splitting proxies (SPEPs) are often used to improve TCP performance over wireless links. We investigate current operator SPEPs (used in 4G LTE networks) under mmWave-like dynamics using the MONROE testbed. We introduce a mmWave emulation model for an urban canyon scenario, and use it to evaluate how current operational SPEPs impact the performance. Our results from experiments including four operators and three countries, indicate that SPEPs will be even more important for 5G mmWave than they are in LTE. Current 4G SPEPs provide significant, though not optimal, benefits under mmWave-like conditions, allowing them to be utilized as the network transitions to 5G technology.
Afilliation | Communication Systems |
Project(s) | MAMI: Measurement and Architecture for a Middleboxed Internet, MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Proceedings, refereed |
Year of Publication | 2019 |
Conference Name | IEEE Local Computer Networks (LCN) Symposium on Emerging Topics in Networking |
Pagination | 108--116 |
Date Published | 10/2019 |
Publisher | IEEE |
ISBN Number | 978-1-7281-2561-9 |
URL | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9000661&isnumber... |
DOI | 10.1109/LCNSymposium47956.2019.9000661 |
Estimating Downlink Throughput from End-User Measurements in Mobile Broadband Networks
In IEEE World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2019.Status: Published
Estimating Downlink Throughput from End-User Measurements in Mobile Broadband Networks
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe |
Publication Type | Proceedings, refereed |
Year of Publication | 2019 |
Conference Name | IEEE World of Wireless, Mobile and Multimedia Networks (WoWMoM) |
Publisher | IEEE |
Web Experience in Operational Mobile Networks: Lessons from Two Million Page Visits
In WWW '19: The World Wide Web Conference. ACM, 2019.Status: Published
Web Experience in Operational Mobile Networks: Lessons from Two Million Page Visits
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Proceedings, refereed |
Year of Publication | 2019 |
Conference Name | WWW '19: The World Wide Web Conference |
Pagination | 1532-1543 |
Publisher | ACM |
Measuring Web Quality of Experience in Cellular Networks
In International Conference on Passive and Active Network Measurement. Cham: Springer International Publishing, 2019.Status: Published
Measuring Web Quality of Experience in Cellular Networks
Afilliation | Communication Systems |
Project(s) | MONROE: Measuring Mobile Broadband Networks in Europe , Department of Mobile Systems and Analytics |
Publication Type | Proceedings, refereed |
Year of Publication | 2019 |
Conference Name | International Conference on Passive and Active Network Measurement |
Pagination | 18-33 |
Publisher | Springer International Publishing |
Place Published | Cham |
NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet

The NEAT project wants to achieve a complete redesign of the way in which Internet applications interact with the network. Our goal is to allow network "services" offered to applications – such as reliability, low-delay communication or security – to be dynamically tailored based on application demands, current network conditions, hardware capabilities or local policies, and also to support the integration of new network functionality in an evolutionary fashion, without applications having to be rewritten. This architectural change will make the Internet truly “enhanceable”, by allowing applications to seamlessly and more easily take advantage of new network features as they evolve.
Funding source

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 644334. (ICT-05-2014: Smart Networks and novel Internet Architectures)
All partners:
- Simula Research Laboratory (Norway)
- Celerway (Norway)
- Cisco Europe (France)
- EMC (Ireland)
- Mozilla Denmark (Denmark)
- Fachhochschule Münster (Germany)
- Karlstad University (Sweden)
- University of Aberdeen (United Kingdom)
- University of Oslo (Norway)
Project leader
David Ros, Simula Research Laboratory (Norway)
Online presence
Publications at The Center for Resilient Networks and Applications
Journal Article
On the Usability of Transport Protocols other than TCP: A Home Gateway and Internet Path Traversal Study
Computer Networks 173 (2020).Status: Published
On the Usability of Transport Protocols other than TCP: A Home Gateway and Internet Path Traversal Study
Network APIs are moving towards protocol agility, where applications express their needs but not a static protocol binding, and it is up to the layer below the API to choose a suitable protocol. The IETF Transport Services (TAPS) Working Group is standardizing a protocol-independent transport API and offering guidance to implementers. Apple’s recent “Network.framework” is specifically designed to allow such late and dynamic binding of protocols. When the network stack autonomously chooses and configures a protocol, it must first test which protocols are locally available and which work end-to-end (“protocol racing”). For this, it is important to know the set of available options, and which protocols should be tried first: Does it make sense to offer unchecked payload delivery, as with UDP-Lite? Is a UDP-based protocol like QUIC always a better choice, or should native SCTP be tried? This paper develops answers to such questions via (i) a NAT study in a local testbed, (ii) bidirectional Internet tests, (iii) a large scale Internet measurement campaign. The examined protocols are: SCTP, DCCP, UDP-Lite, UDP with a zero checksum and three different UDP encapsulations.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet |
Publication Type | Journal Article |
Year of Publication | 2020 |
Journal | Computer Networks |
Volume | 173 |
Date Published | 05/2020 |
Publisher | Elsevier |
ISSN | 1389-1286 |
Keywords | DCCP, Internet, NAT, Protocol Testing, SCTP, UDP-Lite |
DOI | 10.1016/j.comnet.2020.107211 |
Journal Article
On the Utility of Unregulated IP DiffServ Code Point (DSCP) Usage by End Systems
Performance Evaluation 135 (2019): 102036.Status: Published
On the Utility of Unregulated IP DiffServ Code Point (DSCP) Usage by End Systems
DiffServ was designed to implement service provider quality of service (QoS) policies, where routers change and react upon the DiffServ Code Point (DSCP) in the IP header. However, nowadays, applications are beginning to directly set the DSCP themselves, in the hope that this will yield a more appropriate service for their respective video, audio and data streams. WebRTC is a prime example of such an application. We present measurements, for both IPv4 and IPv6, of what happens to DSCP values along Internet paths after an end system has set them without any prior agreement between a customer and a service provider. We find that the DSCP is often changed or zeroed along the path, but detrimental effects from using the DSCP are extremely rare; moreover, DSCP values sometimes remain intact (potentially having an effect on traffic) for several AS hops. This positive result motivates an analysis of the potential latency impact from such DSCP usage, for which we present the first measurement results. We find that routers at approximately 3% of more than 100,000 links differentiate between the WebRTC DSCP values (EF, AF42 and CS1) and consistently reduce delay in comparison with probes carrying a zero value (CS0) under congestion. In contrast, routers at around 2% of these links increase the delay by a comparable amount under congestion, uniformly for EF, AF42 and CS1.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Journal Article |
Year of Publication | 2019 |
Journal | Performance Evaluation |
Volume | 135 |
Pagination | 102036 |
Date Published | 08/2019 |
Publisher | Elsevier |
ISSN | 0166-5316 |
Keywords | DiffServ, DiffServ Code Point, latency, QoS, WebRTC |
URL | https://doi.org/10.1016/j.peva.2019.102036 |
DOI | 10.1016/j.peva.2019.102036 |
Proceedings, refereed
ctrlTCP: Reducing Latency through Coupled, Heterogeneous Multi-Flow TCP Congestion Control
In 21st IEEE Global Internet Symposium (GI 2018). Honolulu, HI, USA: IEEE, 2018.Status: Published
ctrlTCP: Reducing Latency through Coupled, Heterogeneous Multi-Flow TCP Congestion Control
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet |
Publication Type | Proceedings, refereed |
Year of Publication | 2018 |
Conference Name | 21st IEEE Global Internet Symposium (GI 2018) |
Date Published | 04/2018 |
Publisher | IEEE |
Place Published | Honolulu, HI, USA |
Notes | In conjunction with IEEE INFOCOM, Honolulu, HI, USA |
URL | https://www.duo.uio.no/handle/10852/71297 |
DOI | 10.1109/INFCOMW.2018.8406887 |
Journal Article
NEAT: A Platform- and Protocol-Independent Internet Transport API
IEEE Communications Magazine 55, no. 6 (2017): 46-54.Status: Published
NEAT: A Platform- and Protocol-Independent Internet Transport API
The sockets Applications Programming Interface (API) has become the standard way that applications access the transport services offered by the Internet Protocol stack. This paper presents NEAT, a user-space library that can provide an alternate transport API. NEAT allows applications to request the service they need using a new design that is agnostic to the specific choice of transport protocol underneath. This not only allows applications to take advantage of common protocol machinery, but also eases introduction of new network mechanisms and transport protocols. The paper describes the components of the NEAT library and illustrates the important benefits that can be gained from this new approach. NEAT is a software platform for developing advanced network applications that was designed in accordance with the standardization efforts on Transport Services (TAPS) in the Internet Engineering Task Force (IETF), but its features exceed the envisioned functionality of a TAPS system.
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet |
Publication Type | Journal Article |
Year of Publication | 2017 |
Journal | IEEE Communications Magazine |
Volume | 55 |
Issue | 6 |
Pagination | 46-54 |
Date Published | 06/2017 |
Publisher | IEEE |
ISSN | 0163-6804 |
DOI | 10.1109/MCOM.2017.1601052 |
Research Notes | https://www.neat-project.org/publications/#papers |
Proceedings, refereed
fling: A Flexible Ping for Middlebox Measurements
In 2017 29th International Teletraffic Congress (ITC 29). Vol. 1. IEEE, 2017.Status: Published
fling: A Flexible Ping for Middlebox Measurements
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet |
Publication Type | Proceedings, refereed |
Year of Publication | 2017 |
Conference Name | 2017 29th International Teletraffic Congress (ITC 29) |
Volume | 1 |
Pagination | 134–142 |
Publisher | IEEE |
A NEAT Way to Browse the Web
In Proceedings of the Applied Networking Research Workshop (ANRW). Praha/Czech Republic: IEEE, 2017.Status: Published
A NEAT Way to Browse the Web
There is a growing concern that the Internet transport layer has become ossified in the face of emerging novel applications, and that further evolution has become very difficult. The NEAT system is a novel and evolvable transport system that decouples applications from the underlying transport layer and network services. In so doing, it facilitates dynamic transport selection. This demo shows how the NEAT system is able to dynamically select the most appropriate transport solution for the Mozilla Firefox web browser.
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet, NorNet |
Publication Type | Proceedings, refereed |
Year of Publication | 2017 |
Conference Name | Proceedings of the Applied Networking Research Workshop (ANRW) |
Date Published | 07/15/2017 |
Publisher | IEEE |
Place Published | Praha/Czech Republic |
Keywords | NEAT, ossification, SCTP, tcp, Transport Selection, Transport Service |
Notes | Demo Presentation |
URL | https://irtf.org/anrw/2017/anrw17-final13.pdf |
Evaluating CAIA Delay Gradient as a Candidate for Deadline-Aware Less-than-Best-Effort Transport
In Workshop on Future of Internet Transport (FIT 2017). IFIP, 2017.Status: Published
Evaluating CAIA Delay Gradient as a Candidate for Deadline-Aware Less-than-Best-Effort Transport
Less-than-best-effort (LBE) congestion control offers a low-priority service for applications tolerant to high latency and low throughput, like peer-to-peer file transfers or automatic software updates. There are, however, situations where it would be beneficial for the application to specify a soft deadline for task completion. Examples of such situations could be completion of backup tasks or synchronisation between CDN data centres. Since network conditions change over time, a deadline-aware LBE (DA-LBE) congestion control would need the ability to dynamically adapt how aggressively it competes for capacity to meet the soft deadline, trading low-priority behaviour for timeliness. One candidate that shows promise as a LBE congestion control is CAIA Delay Gradient (CDG). CDG uses changes in measured end-to-end delay to control the congestion window. CDG has several parameters that might help tune its “aggressiveness” in a way that might help achieve the goal of DA-LBE congestion control. We have evaluated CDG in order to establish how it can be tuned to exhibit different degrees of LBE behaviour under varying network conditions. Our results show that it is possible to control CDG to vary its aggressiveness in a consistent way, making it a prime candidate to implement a DA-LBE congestion control system.
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet |
Publication Type | Proceedings, refereed |
Year of Publication | 2017 |
Conference Name | Workshop on Future of Internet Transport (FIT 2017) |
Publisher | IFIP |
ISBN Number | 978-3-901882-94-4 |
Keywords | congestion control, deadline-aware congestion control, Less-than-Best-Effort Service, scavenger service |
URL | http://dl.ifip.org/db/conf/networking/networking2017/1570350870.pdf |
DOI | 10.23919/IFIPNetworking.2017.8264882 |
A Framework for Less than Best Effort Congestion Control with Soft Deadlines
In 2017 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE, 2017.Status: Published
A Framework for Less than Best Effort Congestion Control with Soft Deadlines
Applications like inter data-centre synchronisation or client-to-cloud backups require a reliable end-to-end data transfer, however, they typically do not have strong capacity or latency constraints, just a loose delivery deadline. Besides, their potential to disrupt more quality-constrained flows should be kept to a minimum. These applications could be well served by a transport protocol providing a less-than-best-effort (LBE) or scavenger service rather than TCP but, neither TCP nor standard LBE methods like LEDBAT consider any notion of deadline or completion time. TCP simply tries to maximise the use of available capacity, while LEDBAT tries to enforce an LBE behaviour regardless of any timeliness requirements.
This paper introduces a framework for adding both LBE behaviour and awareness of “soft” delivery deadlines to any congestion control (CC) algorithm, whether loss-based, delay-based or explicit signaling-based. This effectively allows it to turn an arbitrary CC protocol into a scavenger protocol that dynamically adapts its sending rate to network conditions and remaining time before the deadline, to balance timeliness and transmission aggressiveness. Network utility maximization (NUM) theory provides a solid foundation for the proposal. The effectiveness of the approach is validated by numerical and simulation experiments, with TCP Cubic and Vegas used as examples.
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet |
Publication Type | Proceedings, refereed |
Year of Publication | 2017 |
Conference Name | 2017 IFIP Networking Conference (IFIP Networking) and Workshops |
Publisher | IEEE |
ISBN Number | 978-3-901882-94-4 |
URL | http://dl.ifip.org/db/conf/networking/networking2017/1570334752.pdf |
DOI | 10.23919/IFIPNetworking.2017.8264853 |
Talks, invited
NEAT Tutorial at Hainan University: Getting Started with NEAT
In Haikou, Hainan, People's Republic of China. Haikou, Hainan/People's Republic of China, 2017.Status: Published
NEAT Tutorial at Hainan University: Getting Started with NEAT
The goal of NEAT (A New, Evolutive API and Transport-Layer Architecture for the Internet) is to allow network "services" offered to applications – such as reliability, low-delay communication or security – to be dynamically tailored based on application demands, current network conditions, hardware capabilities or local policies, and also to support the integration of new network functionality in an evolutionary fashion, without applications having to be rewritten. This talk gives a practical introduction to NEAT from a developer's perspective: after an introduction to NEAT, the APIs and in particular the NEAT Sockets API are explained. This is followed by pseudo-code examples and finally running-code examples. These running-code examples particularly also show how to use NEAT in NorNet Core.
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet, NorNet |
Publication Type | Talks, invited |
Year of Publication | 2017 |
Location of Talk | Haikou, Hainan, People's Republic of China |
Place Published | Haikou, Hainan/People's Republic of China |
Type of Talk | Tutorial |
Keywords | Client, Examples, NEAT, NEAT Sockets API, NorNet Core, programming, Server |
A Practical Introduction to NEAT at Hainan University
In Haikou, Hainan, People's Republic of China. Haikou, Hainan, People's Republic of China, 2017.Status: Published
A Practical Introduction to NEAT at Hainan University
The goal of NEAT (A New, Evolutive API and Transport-Layer Architecture for the Internet) is to allow network "services" offered to applications – such as reliability, low-delay communication or security – to be dynamically tailored based on application demands, current network conditions, hardware capabilities or local policies, and also to support the integration of new network functionality in an evolutionary fashion, without applications having to be rewritten. This talk gives a practical introduction to NEAT from a developer's perspective: after an introduction to NEAT, the APIs and in particular the NEAT Sockets API are explained. This is followed by pseudo-code examples and finally running-code examples. These running-code examples particularly also show how to use NEAT in NorNet Core
Afilliation | Communication Systems |
Project(s) | NEAT: A New, Evolutive API and Transport-Layer Architecture for the Internet, NorNet |
Publication Type | Talks, invited |
Year of Publication | 2017 |
Location of Talk | Haikou, Hainan, People's Republic of China |
Place Published | Haikou, Hainan, People's Republic of China |
Type of Talk | Invited Talk |
Keywords | Client, Examples, NEAT, NEAT Sockets API, NorNet Core, programming, Server |
MobRob: Resilient Networks Mobile Broadband Measurements

The Centre for resilient networks and applications (CRNA) at Simula leads and operates an activity that continuously measures and evaluates the robustness of the service of all major mobile broadband providers in Norway. These measurements are financed by the Ministry of Transport and Communication. During the fall of 2011 all providers were invited to participate in this effort. Participation from providers is sought to scale up the scale the number of measurement points that Simula can operate and to give the participating providers access to unique measurement data that closely captures end users’ experience. Tele2 and Ice Norge expressed willingness and joined Simula in building the first large-scale mobile broadband measurements world-wide. MobRob was commissioned immediately thereafter to manage and steer this collaboration.
The ambition of MobRob is to build a unique large scale measurement infrastructure and to create a dynamic medium where researchers and network operators can work together. Since its start in 2012, MobRob along with Robuste nett 2 have managed to deploy several hundreds of measurement points all over Norway. Participating operators have been using the collected measurement data in conjunction with data analysis and visualization systems developed by Simula to monitor how end users perceive their services.
Final goal:
Funding source:
Partners and self-financing from CRNA
All partners:
- Tele2
- Ice Norge
Publications at The Center for Resilient Networks and Applications
Book Chapter
5G-sikkerhet: Norge mellom stormaktene
In Digitalisering og internasjonal politikk. Universitetsforlaget, 2022.Status: Published
5G-sikkerhet: Norge mellom stormaktene
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Book Chapter |
Year of Publication | 2022 |
Book Title | Digitalisering og internasjonal politikk |
Chapter | 7 |
Date Published | 01/2022 |
Publisher | Universitetsforlaget |
ISBN Number | 9788215052557 |
Proceedings, refereed
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
In Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA). Sydney, New South Wales/Australia: Springer, 2022.Status: Accepted
Load Distribution for Mobile Edge Computing with Reliable Server Pooling
Energy-efficient computing model is a popular choice for high performance as well as throughput oriented computing ecosystems. Mobile (computing) devices are becoming increasingly ubiquitous to our computing domain, but with limited resources (true both for computation as well as for energy). Hence, workload offloading from resource-constrained mobile devices to the Edge and maybe (later) to the cloud become necessary as well as useful. Thanks to the persistent technical breakthroughs in global wireless standards (or in mobile networks) together with the almost limitless amount of resources in public cloud platforms, workload offloading is possible and cheaper. In such scenarios, Mobile Edge Computing (MEC) resources could be provisioned in proximity to the users for supporting latency-sensitive applications. Here, two relevant problems could be: i) How to distribute workload to the resource pools of MEC as well as public (multi-)clouds? ii) How to manage such resource pools effectively? To answer these problems in this paper, we examine the performance of our proposed approach using the Reliable Server Pooling (RSerPool) framework in more detail. We also have outlined the resource pool management policies to effectively use RSerPool for workload offloading from mobile devices into the cloud/MEC ecosystem.
Afilliation | Communication Systems |
Project(s) | 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, SMIL: SimulaMet Interoperability Lab, MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing |
Publication Type | Proceedings, refereed |
Year of Publication | 2022 |
Conference Name | Proceedings of the 4th International Workshop on Recent Advances for Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with the 36th International Conference on Advanced Information Networking and Applications (AINA) |
Publisher | Springer |
Place Published | Sydney, New South Wales/Australia |
Keywords | Cloud computing, Load Distribution, Mobile Edge Computing (MEC), Multi-Cloud Computing, Reliable Server Pooling (RSerPool), Serverless Computing |
Public outreach
Hvorfor er vi redde for Huawei?
NUPI, 2022.Status: Published
Hvorfor er vi redde for Huawei?
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Public outreach |
Year of Publication | 2022 |
Publisher | NUPI |
Type of Work | Podcast |
URL | https://shows.acast.com/utenrikshospitalet/episodes/hvorfor-er-vi-redde-... |
Cybersikkerhet med Olav Lysne
lorn.tech: Lørntech, 2022.Status: Published
Cybersikkerhet med Olav Lysne
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Public outreach |
Year of Publication | 2022 |
Publisher | Lørntech |
Place Published | lorn.tech |
Type of Work | Masterclass |
URL | https://www.lorn.tech/cybersikkerhet-med-olav-lysne/1126-leksjon-2-i-cyb... |
Chinese Cyberwarfare - interview in French TV-program
arte.tv, 2022.Status: Published
Chinese Cyberwarfare - interview in French TV-program
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Public outreach |
Year of Publication | 2022 |
Publisher | arte.tv |
URL | https://www.arte.tv/en/videos/092189-000-A/chinese-cyberwarfare/ |
Talks, contributed
NorNet – A Linux- and Open-Source-Software-based International Platform for Networking Research
In Virtual. Melbourne, Australia: Linux Conference Australia, 2022.Status: Published
NorNet – A Linux- and Open-Source-Software-based International Platform for Networking Research
The NorNet testbed (https://www.nntb.no) is an Internet testbed platform for research on multi-homed systems. The particular property of multi-homed systems is to be connected to multiple Internet Service Providers (ISP) simultaneously. Its initial purpose is of course to still provide connectivity in case of ISP/network failures. But does it really work that well, also with current protocols and applications? And redundancy does not come for free. A user connected to multiple ISPs will also receive multiple Internet bills each month. So, is there a possibility to make further use of multi-homing in the usual case where nothing goes wrong? Obviously, there are a lot of interesting research questions, which need to be examined in realistic Internet setups! Therefore, we are building up the NorNet open Internet testbed platform as a Linux- and Open-Source-software-based infrastructure, which currently spreads over multiple sites in different countries.
NorNet makes extensive use of advanced Linux features like Kernel-based Virtualisation (KVM), Linux Containers (LXC), BTRFS file system features, IP routing rules, Stream Control Transmission Protocol (SCTP), Multi-Path TCP (MPTCP), and many more. The goal of this talk is therefore to present an overview of the testbed, its underlying Linux features, and how they are combined to provide the multi-homing features to the various testbed users. This particularly includes an overview of how to make use of multi-path transport with MPTCP – based on the Linux MPTCP implementation – in multi-homed environments. The idea is to provide guidelines for also utilising multi-homing features in own projects.
Afilliation | Communication Systems |
Project(s) | NorNet, The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure |
Publication Type | Talks, contributed |
Year of Publication | 2022 |
Location of Talk | Virtual |
Publisher | Linux Conference Australia |
Place Published | Melbourne, Australia |
Keywords | Linux, Multi-Homing, Multi-Path Transport, NorNet, Open Source, Testbed |
URL | https://lca2022.linux.org.au/schedule/presentation/52/ |
Talks, invited
Kommentarer til "Målbilder for Robuste ekomnett mot 2030"
In Nasjonal Kommunikasjonsmyndighet sin offentliggjøring av målbilder mot 2030. NKOM, 2022.Status: Published
Kommentarer til "Målbilder for Robuste ekomnett mot 2030"
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Talks, invited |
Year of Publication | 2022 |
Location of Talk | Nasjonal Kommunikasjonsmyndighet sin offentliggjøring av målbilder mot 2030 |
Publisher | NKOM |
Book
AI and ML – Enablers for Beyond 5G Networks
Online: 5G PPP Technology Board, 2021.Status: Published
AI and ML – Enablers for Beyond 5G Networks
This white paper on AI and ML as enablers of beyond 5G (B5G) networks is based on contributions from almost 20 5G PPP projects, coordinated through the 5G PPP Technology Board, that research, implement and validate 5G and B5G network systems. The paper introduces the main relevant mechanisms in Artificial Intelligence (AI) and Machine Learning (ML), currently investigated and exploited for enhancing 5G and B5G networks.
Afilliation | Communication Systems |
Project(s) | SMIL: SimulaMet Interoperability Lab, Simula Metropolitan Center for Digital Engineering, Simula Metropolitan Center for Digital Engineering, 5G-VINNI: 5G Verticals INNovation Infrastructure , NorNet, The Center for Resilient Networks and Applications |
Publication Type | Book |
Year of Publication | 2021 |
Date Published | 05/2021 |
Publisher | 5G PPP Technology Board |
Place Published | Online |
URL | https://5g-ppp.eu/wp-content/uploads/2021/05/AI-MLforNetworks-v1-0.pdf |
DOI | 10.5281/zenodo.429989 |
Journal Article
Predicting High Delays in Mobile Broadband Networks
IEEE Access 9 (2021): 168999-169013.Status: Published
Predicting High Delays in Mobile Broadband Networks
Afilliation | Communication Systems, Machine Learning |
Project(s) | The Center for Resilient Networks and Applications |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | IEEE Access |
Volume | 9 |
Pagination | 168999 - 169013 |
Date Published | DEC-24-2021 |
Publisher | IEEE |
URL | https://ieeexplore.ieee.org/document/9663160/http://xplorestaging.ieee.o... |
DOI | 10.1109/ACCESS.2021.3138695 |
Optimal Energy Trading with Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids
IEEE Transactions on Cloud Computing (2021).Status: Accepted
Optimal Energy Trading with Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids
The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this paper, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game.
Afilliation | Communication Systems |
Project(s) | The Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering |
Publication Type | Journal Article |
Year of Publication | 2021 |
Journal | IEEE Transactions on Cloud Computing |
Date Published | 10/2021 |
Publisher | IEEE |
DOI | 10.1109/TCC.2021.3118563 |